Go toArchive
Browse byFacets
Bookbag ( 0 )
'Ring Solitons' in keywords
Results  2 Items
Sorted by   
Section
Publication Year
2001 (1)
2000 (1)
1Author    Sen-Yue Lou, Jun Yu, Xiao-Yan TangRequires cookie*
 Title    Higher Dimensional Integrable Models from Lower Ones via Miura Type Deformation Relation  
 Abstract    To find nontrivial high dimensional integrable models (especially in (3+l)-dimensions) is one of the most important problems in nonlinear physics. A systematic method to find some nontrivial high dimensional integrable models is established by means of noninvertible deformation relations. Starting from a noninvertible Miura type transformation, we find that the (l + l)-dimensional sinh-Gordon model appearing in many physical fields is a deformation of the (0+l)-dimensional Riccati equation. A high dimensional Miura type deformation (including two different (3+l)-dimensional reductions) of the heat conduction equation is proved to be Painleve integrable. Some special types of explicit exact solutions, like multi-plane and/or multi-camber soliton solutions, multi-dromion solutions and multiple ring soliton solutions, are obtained. 
  Reference    Z. Naturforsch. 55a, 867—876 (2000); received August 15 2000 
  Published    2000 
  Keywords    Noninvertible Deformation, High Dimensional Integrable Models, Camber Solitons, Ring Solitons 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_A/55/ZNA-2000-55a-0867.pdf 
 Identifier    ZNA-2000-55a-0867 
 Volume    55 
2Author    Jin-Ping Yinga, Sen-Yue LouaRequires cookie*
 Title    Abundant Coherent Structures of the (2+l)-dimensional Broer-Kaup-Kupershmidt Equation  
 Abstract    By using of the Bäcklund transformation, which is related to the standard truncated Painleve analysis, some types of significant exact soliton solutions of the (2+l)-dimensional Broer-Kaup-Kupershmidt equation are obtained. A special type of soliton solutions may be described by means of the variable coefficient heat conduction equation. Due to the entrance of infinitely many arbitrary functions in the general expressions of the soliton solution the solitons of the (2+1 ^ d i­ mensional Broer-Kaup equation possess very abundant structures. By fixing the arbitrary functions appropriately, we may obtain some types of multiple straight line solitons, multiple curved line solitons, dromions, ring solitons and etc. 
  Reference    Z. Naturforsch. 56a, 619—625 (2001); received November 26 2000 
  Published    2001 
  Keywords    Bäcklund Transformation, (2+l)-dimensional Broer-Kaup-Kupershmidt Equation, Dromion Solution, Ring Solitons 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_A/56/ZNA-2001-56a-0619.pdf 
 Identifier    ZNA-2001-56a-0619 
 Volume    56