Go toArchive
Browse byFacets
Bookbag ( 0 )
'Maximum entropy principle' in keywords
Results  1 Item
Sorted by   
Publication Year
1988 (1)
1Author    G. L. Hofacker, Lichtenbergstr, R. D. LevineRequires cookie*
 Abstract    A principle of evolution of highly complex systems is proposed. It is based on extremal properties of the information I{X, 7) characterizing two states X and Y with respect to each other, I{X, Y) = H(Y) -H{Y/X), where H(Y) is the entropy of state Y,H(Y/X) the entropy in state Y given the probability distribu­ tion P(X) and transition probabilities P(Y/X). As I(X, 7) is maximal in P(Y) but minimal in P(Y/X), the extremal properties of I(X, 7) con­ stitute a principle superior to the maximum entropy principle while containing the latter as a special case. The principle applies to complex systems evolving with time where fundamental equations are unknown or too difficult to solve. For the case of a system evolving from X to Y it is shown that the principle predicts a canonic distribution for a state Y with a fixed average energy <£>. 
  Reference    Z. Naturforsch. 43a, 73—77 (1988); received July 11 1987 
  Published    1988 
  Keywords    Mutual information, Channel capacity, Maximum entropy principle, Extremal pro­ perties of information 
  Similar Items    Find
 TEI-XML for    default:Reihe_A/43/ZNA-1988-43a-0073.pdf 
 Identifier    ZNA-1988-43a-0073 
 Volume    43