Go toArchive
Browse byFacets
Bookbag ( 0 )
'H erbicide Binding' in keywords
Results  1 Item
Sorted by   
Section
Publication Year
1984 (1)
1Author    G. Renger, R. H. Agem Ann, W.F J V Erm AasRequires cookie*
 Title    Studies on the Functional Mechanism of System II Herbicides in Isolated Chloroplasts  
 Abstract    The effect o f specific proteolytic enzymes on variable fluorescence, p-benzoquinone-m ediated oxygen evolution, PS II herbicide (atrazine and brom oxynil) binding, and protein degradation has been analyzed in isolated class II pea chloroplasts. It was found that: 1. Trypsin and a lysine-specific protease effectively reduce the m axim um chlorophyll-a flu o­ rescence yield, whereas the initial fluorescence remains alm ost constant. At the sam e number o f enzymatic activity units both proteases have practically the sam e effect. 2 Trypsin and a lysine-specific protease inhibit the /»-benzoquinone-m ediated flash-induced oxygen evolution with trypsin being markedly more effective at the sam e num ber o f activity units o f both enzymes. Unstacked thylakoids exhibit a higher sensitivity to proteolytic degrada­ tion by both enzymes. 3. Trypsin and a lysine-specific protease reduce the binding capacity o f [14C]atrazine, but enhance that o f [l4C]bromoxynil (at long incubation tim es trypsin treatm ent also impairs bromoxynil binding). At the same specific activity a m arkedly longer treatm ent is required for the lysine-specific protease in order to achieve the same degree o f m odification as w ith trypsin. 4. Trypsin was found to attack the rapidly-turned-over 32 kD a-protein severely, whereas the lysine-specific protease does not m odify this polypeptide. On the other hand, the lysine-specific protease attacks the light harvesting com plex II. 5. Under our experimental conditions an arginine-specific protease did not affect chlorophyll-a fluorescence yield, /?-benzoquinone-mediated oxygen evolution, herbicide binding and the p oly­ peptide pattern. Based on these results a m echanism is proposed in w hich an as yet unidentified polypeptide with exposable lysine residues, as well as the lysine-free "Q B-protein" regulate the electron transfer from Q ^ to Q B and are involved in herbicide binding. 
  Reference    Z. Naturforsch. 39c, 362—367 (1984); received Decem ber 1 1983 
  Published    1984 
  Keywords    Chloroplasts, Proteolytic Enzymes, Fluorescence, Oxygen Evolution, H erbicide Binding 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/39/ZNC-1984-39c-0362.pdf 
 Identifier    ZNC-1984-39c-0362 
 Volume    39