Go toArchive
Browse byFacets
Bookbag ( 0 )
'Genetic Control' in keywords Facet   Publication Year 1981  [X]
Results  2 Items
Sorted by   
Section
Publication Year
1981[X]
1Author    R. R. Br, G. Spribille, ForkmRequires cookie*
 Title    Genetic Control of Chalcone Synthase Activity in Flowers of Matthiola incana  
 Abstract    Chalcone synthase activity was demonstrated in enzyme preparations from flowers o f defined genotypes of Matthiola incana (stock). The product formed from 4-coumaroyl-CoA and malonyl-CoA was naringenin and not the isomeric chalcone, because chalcone isomerase was also present in the reaction mixture. Chalcone synthase activity could be detected only in flower extracts o f genotypes with wild-type alleles at the locus f Thus, the interruption of the anthocyanin pathway in white flowering lines with recessive alleles (ff) of this gene is clearly due to a lack o f this enzyme activity. Independent on the genetic state of the locus b which controls the formation of pelargonidin or cyanidin, respectively, in the flowers, 4-coumaroyl-CoA was the only suitable substrate for the condensation reaction. 
  Reference    Z. Naturforsch. 36c, 619 (1981); received April 3 1981 
  Published    1981 
  Keywords    Anthocyanins, Flavonoids, Chalcone Synthase, Genetic Control, Matthiola incana 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/36/ZNC-1981-36c-0619.pdf 
 Identifier    ZNC-1981-36c-0619 
 Volume    36 
2Author    G. Forkmann, G. StotzRequires cookie*
 Title    Genetic Control of Flavanone 3-Hydroxylase Activity and Flavonoid 3'-Hydroxylase Activity in Antirrhinum majus (Snapdragon)  
 Abstract    In flower extracts o f defined genotypes o f Antirrhinum majus, two different hydroxylases were found catalysing the hydroxylation o f naringenin and eriodictyol in the 3-position and of naringenin in the 3'-position. The 3-hydroxylase is a soluble enzyme and belongs according to its cofactor requirement to the 2-oxoglutarate-dependent dioxygenases. Investigations on different genotypes revealed a clear correlation between block o f the anthocyanin pathway by recessive alleles of the gene inc and a complete lack of 3-hydroxylase activity. Chemogenetic studies on different genotypes suggested that the 3'-hydroxyl group of the B-ring of flavonoids is introduced at the stage of C15 intermediates. The corresponding 3'-hydroxylase was found to be localized in the microsomal fraction and required NADPH as cofactor. In confirmation o f the chemogenetic studies, a strict correlation was found between 3'-hydroxylase activity and the gene eos which is known to control the hydroxylation o f flavones, flavonols and anthocyanins in the 3'-position. These results are similar to those previously obtained with Matthioia incana. 
  Reference    Z. Naturforsch. 36c, 411 (1981); received January 20 1981 
  Published    1981 
  Keywords    Anthocyanin Biosynthesis, Antirrhinum majus, Flavonoids, Flavanone 3-Hydroxylase, Flavonoid 3'-Hydroxylase, Genetic Control 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/36/ZNC-1981-36c-0411.pdf 
 Identifier    ZNC-1981-36c-0411 
 Volume    36