Go toArchive
Browse byFacets
Bookbag ( 0 )
'Auxin' in keywords Facet   Publication Year 1980  [X]
Results  2 Items
Sorted by   
Section
Publication Year
1980[X]
1Author    Achim Hager, Roland Frenzel, D. Orothee LaibleRequires cookie*
 Title    ATP-dependent Proton Transport into Vesicles of Microsomal Membranes of Zea mays Coleoptiles  
 Abstract    ATP-dependent proton pumps were found in the vesicles of microsomal membrane fractions of maize coleoptiles. Two membrane fractions isolated by density gradient centrifugation were identified by the aid of marker enzymes and electron microscopic analysis. Membrane fraction A largely consisted of vesicles of smooth ER and of the Golgi complex, fraction B predominantly of vesicles of plasmalemma and rough ER. The pH-indicator, neutral red, was used to measure changes in pH in the vesicles after ATP addition. Due to the binding of protonated neutral red molecules (NRH+) to negative charges of the energized membrane, a strong metachromasy of NRH+-absorption can be observed. Therefore, in order to accurately measure A pH a pH-dependent change in absorption of neutral red covering the whole NR-spectrum was set up as difference spectra. The commonly employed method of measuring AA of neutral red at just one wavelength (525 nm) leads to entirely incorrect results. It could be demonstrated that the ATP-dependent translocation of H+-ions into the interior of the vesicles was most efficient at pH 7. Acidification, which reaches its maximum 10-15 min after ATP addition, can be reverted by adding CCCP. An ATP-dependent proton-translocation into the vesicles of fraction B was also observed, however, the proton translocation is less than that found in fraction A in relation to the amount of protein found in each. The membrane fraction A displays a strong oxidation of NADH subsequently followed by an alkalization of the medium. This process cannot be reverted by adding CCCP. NADH oxidation at membranes of fraction A is consequently not an integral part of a redox-pump. A possible significance of the ATP-dependent proton pump in membranes of the ER and Golgi fraction of coleoptiles is discussed in connection with auxin induced elongation growth. 
  Reference    Z. Naturforsch. 35c, 783—793 (1980); received May 22 1980 
  Published    1980 
  Keywords    Proton Pump, H+-ATPase, Zea mays, Coleoptile, Auxin 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/35/ZNC-1980-35c-0783.pdf 
 Identifier    ZNC-1980-35c-0783 
 Volume    35 
2Author    A. HagerRequires cookie*
 Title    A vena Coleoptile Segments: Hyperelongation Growth after Anaerobic Treatment  
 Abstract    Avena sativa coleoptile segments show an anomalous increase in elongation growth following a short period of oxygen deprivation (tested between 0 and 60 min) lasting 20-30 min (^«aero-biosis-^erobiosis transition effect = ANA effect). The increase in growth rate is 600% and is commensurate with that observable following an auxin treatment. This hyperelongation growth, in contrast to the auxin-induced growth, begins without a lag phase. The growth "burst" following anaerobiosis is similarly to auxin-induced elongation growth, and is suppressed increasingly by neutral or more alkaline buffers. Hyperelongation growth is suppressed by respiratory inhibitors and uncouplers. A complete inhibition is effected with KCN (0.5 mM) sodium azide (0.5 mM) and CCCP (1 |iM); amytal (in the range 0.5 to 1 mM) and sodium arsenate (0.1 to 1 mM) are strong inhibitors. Some of these compounds (KCN, arsenate, amytal) cause a slight increase of the ANA effect in very low concentrations, which is probably due to the K+ or Na+ ions present; on their own, these ions have a strong positive influence on the ANA effect. During anaerobiosis the ATP level sinks around 75% and almost returns to the old value, following the supply of air, within one minute. The cell sap pH drops from 6.3 to 5.9 during anaerobiosis within 20 min. This lowering is mainly due to an increase in lactic acid concentration. Other acids such as citric, malic, and aspartic acids show insignificant changes in concentration. The NADH content increases during anaerobiosis, whereas that of NADPH drops almost as much. The mentioned changes in concentration of lactic acid, NADH and NADPH return to the control value within 20-30 min; thus the differences exist as long as hyperelongation growth is under way. Possible relationships between the mentioned chemical changes and hyperelongation growth are discussed. One of the possible explanations is the following: the lowering of the cytoplasmic pH (normally around pH 7) during anaerobiosis due to the formation of lactic acid causes an activation of H+-ATPases in the plasmalemma and ER, since their optimum activity occurs in a pH of 5.5 to 6.5. This activation causes a greater H+-excretion into the cell wall compartment, and thus hyperelongation growth following supply of air and of ATP. 
  Reference    Z. Naturforsch. 35c, 794—804 (1980); received July 12 1980 
  Published    1980 
  Keywords    Avena Coleoptile, Elongation Growth, Anoxia, Auxin, NAD(P)H, Proton Pump 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/35/ZNC-1980-35c-0794.pdf 
 Identifier    ZNC-1980-35c-0794 
 Volume    35