Go toArchive
Browse byFacets
Bookbag ( 0 )
'Acetyl CoA Carboxylase' in keywords
Results  2 Items
Sorted by   
Section
Publication Year
1988 (1)
1977 (1)
1Author    H.Wolfgang Heger, HorstW. PeterRequires cookie*
 Title    Effects of Phospholipids in the Action of Acetyl-CoA Carboxylase from Rat Liver  
 Abstract    Acetyl-CoA carboxylase (E.C. 6.4.1.2) was isolated from rat liver. The purified enzyme con­ tains phospholipids with a rather large amount of phosphatidylinositol (26%). Incubation of the purified acetyl-CoA carboxylase with phospholipase A2 (E.C. 3.1.1.4) or with phospholipase D (E.C. 3.1.1.4) diminishes the phospholipid content by 70%, this treatment leading to a complete inactivation of the enzyme. After removal of the phospholipases, the lipid-depleted enzyme can be reactivated to a certain degree by incubation with a phospholipid extract from rat liver, with phosphatidylinositol alone, or with serum albumin. 
  Reference    (Z. Naturforsch. 32c, 97 [1977]; received October 12 1976) 
  Published    1977 
  Keywords    Phospholipids, Acetyl-CoA Carboxylase, Rat Liver, Fatty Acid Synthesis, Phospholipases 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/32/ZNC-1977-32c-0097.pdf 
 Identifier    ZNC-1977-32c-0097 
 Volume    32 
2Author    Klaus Kobek, Manfred Focke, HartmutK. LichtenthalerRequires cookie*
 Title    Fatty-Acid Biosynthesis and Acetyl-CoA Carboxylase as a Target of Diclofop, Fenoxaprop and other Aryloxy-phenoxy-propionic Acid Herbicides  
 Abstract    The effect of the herbicides and aryloxy-phenoxy-propionic acid derivatives diclofop, fenoxa-prop, fluazifop and haloxyfop and their ethyl, methyl or butyl esters on the de novo fatty-acid biosynthesis of isolated chloroplasts was investigated with intact chloroplasts isolated from sensi-tive grasses (Poaceae) and tolerant dicotyledonous plants (Pisum, Spinacia). The 4 herbicides (free-acid form) block the de novo fatty-acid biosynthesis ([2-l4 C]acetate incorporation into the total fatty-acid fraction) of the sensitive Avena chloroplasts in a dose-dependent manner. The / 50 -values (a 50% inhibition of the [ 14 C]acetate incorporation) lie in the range of 10~ 7 to 2 x 10~ 6 M. The ethyl or methyl esters (diclofop, fenoxaprop, haloxyfop) and butyl ester (fluazifop) do not affect the de novo fatty-acid biosynthesis of isolated chloroplasts or only at a very high concentra-tion of ca. 10" 4 M. In contrast, the de novo fatty-acid biosynthesis of the tolerant dicotyledonous species (pea, spinach) is not affected by the 4 aryloxy-phenoxy-propionic acid herbicides. In an enzyme preparation isolated from chloroplasts of the herbicide-sensitive barley plants the de novo fatty-acid biosynthesis from [ 14 C]acetate and [ 14 C]acetyl-CoA is blocked by all 4 herbi-cides (free acids), whereas that of [ l4 C]malonate and [ I4 C]malonyl-CoA is not affected. This strongly suggests that the target of all 4 herbicides (free-acid form) is the acetyl-CoA carboxylase within the chloroplasts. The applied ester derivatives, in turn, which are ineffective in the isolated chloroplast test system, have equally little or no effect on the activity of the acetyl-CoA carboxyl-ase. It is assumed that the acetyl-CoA carboxylase of the tolerant dicot plants investigated is modified in such a way that the 4 herbicides cannot bind to and affect the target. 
  Reference    Z. Naturforsch. 43c, 47—54 (1988); received November 2 1987 
  Published    1988 
  Keywords    Acetyl-CoA Carboxylase, Chloroplast Metabolism, de novo Fatty-Acid Biosynthesis, Fluazifop, Haloxyfop, Herbicide Sensitivity 
  Similar Items    Find
 DEBUG INFO      
 TEI-XML for    default:Reihe_C/43/ZNC-1988-43c-0047.pdf 
 Identifier    ZNC-1988-43c-0047 
 Volume    43