Abstract

r a v ita tio n as a C o m p o site P a rtic le E ffe c t in a U n ifie d S p in o r-I s o s p in o r P re o n F ield M o d el I The model is defined by a selfregularizing nonlinear preon field equation, and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of fermionic preon fields. Electroweak gauge bosons, leptons, quarks, gluons as preon composites and their effective dynamics etc. were studied in preceding papers. In this paper gravitons are introduced as four-preon composites and their effective interactions are discussed. This discussion is performed by the application of functional quantum theory to the model under consideration and subsequent evaluation of a weak mapping procedure, both introduced in preceding papers. In the low energy limit it is demonstrated that the effective graviton dynamics lead to the complete homogeneous Einstein equations in tetrad formulation. Key words: PACS 04.50 Unified field theories and other theories of gravitation, PACS 04.60 Quantum theory of gravitation, PACS 11.10 Field theory, PACS 12.10 Unified field theories and models, PACS 12.35 Composite models of particles