Isolation of New Alkylthiosulfides from the Essential Oil and Extracts from the Bark of *Scorodophloeus zenkeri* Harms

J. Clavin Kouokam, Josef Zapp and Hans Becker*

Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany.
Fax: +49 681 302 2476. E-mail: h.becker@mx.uni-saarland.de

* Author for correspondence and reprint requests

Z. Naturforsch. 56c, 1003–1007 (2001); received August 13/August 30, 2001

* * *

Scorodophloeus zenkeri, Essential Oil, Alkylthiosulfides

2,3,5-trithiahexane, 2,3,4,6-tetraethiaheptane, 2,4,5,7-tetraethioctane, two pentathianonanes, 2,4,5,7,9-pentathiaundecane and two hexathiaundecanes were isolated from the essential oil and extracts from the bark of *Scorodophloeus zenkeri*. Four other thioalkanes were found in small amounts in the essential oil.

Introduction

Scorodophloeus zenkeri Harms is an endemic tree of Central Africa. It is of restricted height and its diameter exceeds rarely 80 cm (Aubreville and Leroy, 1970). The tree has a garlic-like odor. It is known that this odor comes from sulfur containing compounds as also found in garlic (Allium sativum) (Amvam et al., 1995).

The bark, seeds and wood of *Scorodophloeus zenkeri* are used as spices in some traditional foods such as “Nà-pôô”, “Nkuii” and “Bongo-tjobi” in Cameroon. In Gabon, the bark and the yellow leaves are used as condiments. The bark delivers the so-called “Bubimbi-bark” drug (Hegnauer, 1978; Moir et al., 1980; Baerlocher et al., 1999).

Until now only little work has been carried out on *S. zenkeri* Harms: determination of the fatty acid profile of the spice and chemical analysis of the bark essential oil (Mbofung et al., 1994; Amvam et al., 1995).

In the present work, we have analysed and isolated the main compounds of the essential oil from the bark of *S. zenkeri*. We also isolated some other sulfur-rich compounds from the extracts of the bark.

Results and Discussion

The essential oil and the dichloromethane and methanol extracts of the bark were fractioned using vacuum liquid chromatography (VLC), size exclusion chromatography (SEC), TLC and HPLC. The fractions and isolated compounds were analysed by GC-MS and NMR spectroscopy.

Isolated compounds

Compound 1 showed the molecular ion peak in the EIMS at m/z 140. The mass peak at m/z 46 indicated the presence of a CH$_2$S$^+$ fragment. The base peak, m/z 61, represented a CH$_3$SCH$_2$+ fragment. Another important peak at m/z 93 was attributed to a C$_2$H$_5$S$_2$+ fragment (CH$_3$SSCH$_2$+ or CH$_3$SCH$_3$S$^+$). The 3H and 13C NMR spectra showed signals for two methyls (δ$_H$ 2.21, δ$_C$ 15.2, CH$_3$S; δ$_H$ 2.48, δ$_C$ 23.4, CH$_3$SS) and a methylene group (δ$_H$ 3.83, δ$_C$ 44.3, SCH$_2$S). These data led to the structure of 2,3,5-trithiahexane, which where in good accordance to the literature data (Block and O’Connor, 1973; Dubs and Stüssi, 1978; Moir et al., 1980; Baerlocher et al., 1999).

The molecular formula of 2, C$_6$H$_5$S$_4$, was obtained from the EIMS (m/z 172). Its 1H NMR spectrum showed three singlets at δ$_H$ 2.23 (3H, CH$_3$S), 2.57 (3H, CH$_3$SS) and 3.98 (2H, SCH$_2$S). The presence of three signals in the 1H NMR spectrum implied that the structure of 2 is asymmetrical and therefore led to 2,3,4,6-tetraethiaheptane, which was supported by comparison of its mass spectrum with that reported in literature (Rapior et al., 1997).

The mass spectrum of compound 3 showed the molecular ion peak at m/z 186, in agreement with the molecular formula C$_4$H$_{10}$S$_4$. The base peak
was at \(m/z \) 61 and represented a \(\text{CH}_3\text{SCH}_2^+ \) fragment. The \(^1\text{H} \) and \(^{13}\text{C} \) NMR spectra showed signals for a methyl (\(\delta_\text{H} 2.22, \delta_\text{C} 15.2, \text{CH}_3\text{S} \)) and a methylene group (\(\delta_\text{H} 3.92, \delta_\text{C} 45.1, \text{SCH}_2\text{S} \)). The spectroscopic data implied that 3 was symmetrical with two \(\text{CH}_2\text{SCH}_2^+ \) fragments surrounding 2 sulfurs. The compound was identified as 2,4,5,7-tetraethiaoctane, in agreement with MS and \(^1\text{H} \) NMR data reported by Weissflog (1983).

Compound 4 was found in a fraction containing 3 as a minor component. The \(^1\text{H} \) and \(^{13}\text{C} \) NMR spectra of 4 were very close to those of 3. However its EIMS showed the molecular ion peak at \(m/z \) 218 indicating one more sulfur than compound 3. Thus, the additional sulfur could only be located in the center of the molecule and therefore compound 4 was identified as 2,4,5,6,8-pentathianonane.

Compound 5, 2,3,4,6,8-pentathianonane, with \(m/z \) at 218 in the EIMS could be deduced as an isomer of 4. Its \(^1\text{H} \) and \(^{13}\text{C} \) NMR spectra showed signals for two methyls (\(\delta_\text{H} 2.26, \delta_\text{C} 15.6, \text{CH}_3\text{S} \)) and two methylenes (\(\delta_\text{H} 4.28, \delta_\text{C} 42.7, \text{SCH}_2\text{S}; \delta_\text{H} 4.34, \delta_\text{C} 67.3, \text{SCH}_2\text{SSS} \)).

Compound 6 showed the molecular ion peak at \(m/z \) 232 in the EIMS indicative of a compound with one more methylene group than the pentathianonanes 4 or 5. The comparison of its MS and \(^1\text{H} \) NMR spectra with those found in the literature (Block et al., 1994; Rapior et al., 1997) led to the identification of 2,4,5,7,9-pentathiadecanes from the literature (Block et al., 1994; Rapior et al., 1997) led to the identification of 2,4,5,7,9-pentathiadecanes as the structure of 6.

Compound 7 was assigned the molecular formula \(\text{C}_5\text{H}_{12}\text{S}_6 \) (EIMS, \(m/z \) 264). The \(^1\text{H} \) NMR spectrum showed three singlets at \(\delta_\text{H} 2.22 (6\text{H}, 2 \times \text{CH}_3\text{S}), \delta_\text{H} 3.94 (4\text{H}, 2 \times \text{SCH}_2\text{SS}) \) and \(\delta_\text{H} 4.20 (2\text{H}, \text{SSCH}_2\text{SS}) \) indicating that 7 was symmetrical. This led to the identification of 7 as 2,4,5,7,8,10-hexathiadecanec.

Compound 8 (EIMS, \(m/z \) 264) was found to be another hexathiadecanec. The \(^1\text{H} \) and \(^{13}\text{CNMR} \) spectra revealed an asymmetrical structure for 8 with two methyls (\(\delta_\text{H} 2.22, \delta_\text{C} 15.1, \text{CH}_3\text{S} \) and \(\delta_\text{H} 2.40, \delta_\text{C} 16.4, \text{CH}_3\text{S} \)) and three methylene groups (\(\delta_\text{H} 3.99, \delta_\text{C} 52.9, \text{CH}_2\text{SCH}_2\text{SCH}_2\text{S}; \delta_\text{H} 4.03, \delta_\text{C} 44.9, \text{CH}_2\text{SCH}_2\text{SSCH}_2\text{S}; \delta_\text{H} 4.40, \delta_\text{C} 56.9, \text{SSCH}_2\text{SS} \)). Accordingly, 8 was identified as 2,3,5,6,8,10-hexathiadecanec.

Headspace-SPME (solid phase microextraction)/GC-MS: A single peak was detected and its EIMS showed a molecular ion peak at \(m/z \) 140. The corresponding compound was identified as 2,3,5-trithiahexane by comparison with the literature (see compound 1).

The essential oil: We obtained a yellow essential oil with a density of 1.3. It expressed a distinctive garlic-like odor. Taken together, the ether fraction (EF) and the pentane fraction (PF) represented a yield of 0.1% of the total plant material. Amwam et al. (1995) obtained the essential oil from S. zenkeri with yields ranging between 0.02 and 0.14%.

The chemical composition was as summarized in Table 1.

The identification of compounds 9–12 of the essential oil was by comparison of their mass spectra with those found in the literature (Rapior et al., 1997).

The essential oil was composed of sulfides and alkylthiosulfides. The major compounds were 2,4,5,7-tetraethiaoctane (3), 2,3,5-trithiahexane (1), 2,3,4,6-tetraethiaheptane (2) and 2,4,5,6,8-pentathianonone (4) found in both fractions (EF and PF). 1 and 3 had been also reported as the main constituents of the essential oil of S. zenkeri with 8 and 34.2% respectively (Amwam et al., 1995).

This is the first report for 2,4,5,7,8,10-hexathiadecanec (7), 2,3,5,6,8,10-hexathiadecanec (8) and 2,4,5,6,8-pentathiadecanec (4).

The alkylthiosulfides constitute a group of compounds which are not widely distributed in higher plants. Until now, only 1 and 3 have been reported from *Scorodocarpus borneensis* Becc., Olacaceae (Kubota et al., 1994). A GC-MS analysis of the fungus *Marasmius alliaceus* has shown the pres-

<table>
<thead>
<tr>
<th>Compound</th>
<th>PF</th>
<th>EF</th>
<th>RT* [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-Tri thiolane (9)</td>
<td>0</td>
<td>3.4</td>
<td>4.88</td>
</tr>
<tr>
<td>2,3,5-Tri thi ahexane (1)</td>
<td>43.2</td>
<td>46.6</td>
<td>5.45</td>
</tr>
<tr>
<td>Dimethyltetrasulfide (10)</td>
<td>0</td>
<td>0.4</td>
<td>6.42</td>
</tr>
<tr>
<td>Tris-methylthiomethane (11)</td>
<td>0</td>
<td>1.7</td>
<td>6.93</td>
</tr>
<tr>
<td>2,3,4,6-Tetra thi aheptane (2)</td>
<td>4.4</td>
<td>6.3</td>
<td>7.93</td>
</tr>
<tr>
<td>2,3,5,7-Tetrathi aoctane (12)</td>
<td>0</td>
<td>1.2</td>
<td>9.15</td>
</tr>
<tr>
<td>2,4,5,7-Tetrathi aoctane (3)</td>
<td>50.0</td>
<td>35.5</td>
<td>9.37</td>
</tr>
<tr>
<td>2,4,5,6,8-Pentathi anonone (4)</td>
<td>2.4</td>
<td>3.8</td>
<td>11.15</td>
</tr>
<tr>
<td>2,4,5,7,9-Pentathi anonene (6)</td>
<td>0</td>
<td>1.1</td>
<td>12.10</td>
</tr>
</tbody>
</table>

* PF = pentane fraction, EF = ether fraction, RT = Retention time.
ence of 1, 2, 3, 5, 9, 10, 11, 12, and a pentathia­
cane (Rapior et al., 1997).

S. zenkeri can thus be considered as an impor­
tant source of alkylthiosulfides.

Experimental

Plant material

The bark was purchased from the central local
market in Yaounde, Cameroon, in March 1999. It
was kept at -20 °C until the experiments were car­
ried out. A voucher specimen is retained in the
collection of the “Fachrichtung Pharmakognosie
und Analytische Phytochemie“, Universität des
Saarlandes, D66041 Saarbrücken.

Steam distillation

Plant material (1057 g) was ground and sub­
jected to steam distillation according to the Euro­
pean Pharmacopeia (Europäisches Arzneibuch,
1997). Instead of xylol, we used pentane (because
it does not disturb the GC-MS analysis) to trap the
essential oil. Only part of the essential oil could be
collected because of its partial solubility in water.
Diethyl ether was therefore used to extract the re­
main ing part from water. Both the pentane frac­
tion (PF) and the ether fraction (EF) were dried
on a column of anhydrous sodium sulfate and ana­
lysed separately. The pentane and the ether frac­
tions were 308 mg and 727 mg respectively.

Extraction

Dichloromethane was used first to extract the
lipophilic substances from bark powder (687 g).
Then, the powder was dried and extracted with
methanol. The methanol extract was suspended in
water and subjected to a liquid-liquid extraction
using ethyl acetate to separate the most non-po­
lar compounds.
Fractionation, isolation and identification

The following techniques were used:
- VLC on silica gel with gradients of ethyl acetate in n-hexane,
- TLC on silica gel with mixtures of ethyl acetate and n-hexane as eluents. The TLC plates were sprayed with anisaldehyde/sulfuric acid reagent and heated. The sulfur-rich compounds appeared as yellow spots which faded within one minute.
- SEC (size exclusion chromatography) was carried out on Sephadex LH-20 with mixtures of dichloromethane and methanol as mobile phases to remove the lipids.

- HPLC: we used a silica gel column (Lichrospher Si 100, 4 mm*250 mm, 5 μm packing material from Merck, Darmstadt) and mixtures of ethyl acetate and n-hexane as mobile phases; a differential refractometer for the detection (RI-8110, Bischoff, Leonberg) and a Knauer HPLC-pump 64 (Knauer, Berlin). The flow rate was 1.5 ml/min.

GC/MS: The bark powder was first submitted to a headspace SPME-GC/MS analysis according to Arthur and Pawlyszin (1990): 1 g of powder was equilibrated in a 20 ml vial at 23 °C for 60 min on a polydimethylsiloxane phase. The GC conditions were the same as for the essential oil. The essential oil and the isolated compounds were analysed using an HP G1800A gas chromatograph from Hewlett Packard, Palo Alto, coupled to an electron ionization detector (at 280 °C) with a HP-5 capillary column (0.25 mm*15 m, 0.25 μm film thickness). The oven temperature was programmed from 50 °C to 325 °C for a total time of 33.3 min. The vector gas was helium at a rate of 1.0 ml/min and the injection mode was either split or splitless at 250 °C.

NMR: The one-dimensional NMR-spectra were recorded with a AM 400 NMR-spectrometer from Bruker, Karlsruhe, with 400 MHz (1H-NMR) and 100 MHz (13C-NMR). The two dimensional NMR spectra were recorded with a DRX-500-NMR spectrometer from Bruker, Karlsruhe.

Spectroscopic data:

2,3,5-trithiahexane (1):
MS: m/z (rel. int.) = 140 (11) M+, 142 (1) M+ + 2, 93 (4), 61 (100), 46 (9).
1H-NMR (CDCl₃): δ (ppm) 2.21 (s, 3H), 2.48 (s, 3H) and 3.83 (s, 2H).
13C-NMR (CDCl₃): δ (ppm) 15.2, 23.4 and 44.3.

2,3,4,6-tetrathiaheptane (2):
MS: m/z (rel. int.) = 172 (4) M+, 107 (8), 93 (44), 79 (10), 61 (100), 46 (14).
1H-NMR (CDCl₃): δ (ppm) 2.23 (s, 3H), 2.57 (s, 3H) and 3.98 (s, 2H).
13C-NMR projected from HSQC (in CDCl₃): δ (ppm) 15.5, 22.9 and 44.1.

2,4,5,7-tetrathiaoctane (3):
MS: m/z (rel. int.) = 186 (7) M+, 93 (6), 61 (100), 46 (7).
1H-NMR (CDCl₃): δ (ppm) 2.22 (s, 6H) and 3.92 (s, 4H).
13C-NMR (CDCl₃): δ (ppm) 15.2 and 45.1.

2,4,5,6,7-pentathianonane (4):
MS: m/z (rel. int.) = 218 (1) M+, 154 (11), 139 (55), 93 (30), 61 (100), 46 (9).
1H-NMR (CDCl₃): δ (ppm) 2.22 (s, 6H) and 3.99 (s, 4H).
13C-NMR (CDCl₃): δ (ppm) 15.6 and 44.5.

2,3,4,6,8-pentathianonane (5):
MS: m/z (rel. int.) = 232 (1) M+, 124 (16), 107 (24), 93 (9), 61 (100), 46 (9).
1H-NMR (CDCl₃): δ (ppm) 2.14 (s, 3H), 2.22 (s, 3H), 3.80 (s, 2H), 3.92 (s, 2H) and 4.10 (s, 2H).

2,3,4,6,7,8,10-hexathiaundecane (6):
MS: m/z (rel. int.) = 264 (0.5) M+, 139 (72), 93 (44), 61 (100), 46 (9).
1H-NMR (CDCl₃): δ (ppm) 2.22 (s, 6H), 3.94 (s, 4H) and 4.20 (s, 2H).
13C-NMR (CDCl₃): δ (ppm) 15.4, 45.5 and 50.2.

2,3,5,6,7,8,9-pentathiadecane (7):
MS: m/z (rel. int.) = 264 (0.4) M+, 93 (10), 61 (100), 46 (6).
1H-NMR (CDCl₃): δ (ppm) 2.22 (s, 3H), 2.40 (s, 3H), 3.99 (s, 2H), 4.03 (s, 2H) and 4.40 (s, 2H).
13C-NMR projection from HSQC (CDCl₃): δ (ppm) 15.1, 16.4, 44.9, 52.9 and 56.9.

1,2,4-Trithiolane (8):
MS: m/z (rel. int.) = 126 (12) M+ + 2, 124 (100) M+, 78 (87), 60 (16), 46 (15).
Dimethyltetrasulfide (9):
MS: m/z (rel. int.) = 158 (100) M+, 79 (96), 64 (31), 47 (29).
Tris-methylthiomethane (11):
MS: m/z (rel. int.) = 154 (17) M+, 106 (71), 61 (100), 46 (8).

2,3,5,7-tetraethiaoctane (12):
MS: m/z (rel. int.) = 186 (4) M+, 139 (21), 107 (59), 93 (10), 61 (100), 46 (9).

Acknowledgement
We thank the DAAD (Deutscher Akademischer Austauschdienst) for its grant to J. C. Kouokam.

