Human Alveolar Macrophages Express Elafin and Secretory Leukocyte Protease Inhibitor

Alina Mihaila and Guy M. Tremblay*

Centre de recherche, Hôpital Laval, Institut universitaire de cardiologie et de pneumologie de l’Université Laval, 2725 chemin Sainte-Foy, Sainte-Foy (Quebec), Canada G1V 4G5.
Fax: +1-418-656-4509. E-mail: guy.tremblay@med.ulaval.ca

* Author for correspondence and reprint requests

Alveolar Macrophage, Elafin, Secretory Leukocyte Protease Inhibitor

Elafin and secretory leukocyte protease inhibitor (SLPI) are two structurally related serine protease inhibitors present in the lung. The cellular origin of elafin in the alveolar space is unknown. It has been suggested that at least one alveolar leukocyte population expresses elafin. We therefore postulated that the alveolar macrophage, as the most numerous leukocyte in the alveolar space, express elafin. On the other hand, it is unclear whether human alveolar macrophages are a source of SLPI. In the present study, we showed by RT-PCR that human alveolar macrophages, but not peripheral blood monocytes, express elafin and SLPI transcripts. Elafin, but not SLPI, mRNA expression was increased time dependently in alveolar macrophages stimulated with Saccharopolyspora rectivirgula antigen (50 μg/ml), a causative agent of hypersensitivity pneumonitis, but not LPS (10 μg/ml). Intracellular or cell-associated elafin protein accumulated after 24 h of culture only in S. rectivirgula antigen-stimulated alveolar macrophages as shown by Western blot. In contrast, alveolar macrophages release 50 ± 6 pg/ml of SLPI in culture medium with no increase in function of time. Alveolar macrophages could be a source of elafin in the lung. In addition to lung structural cells, SLPI could also be derived from alveolar macrophages.

Introduction

Elafin and secretory leukocyte protease inhibitor (SLPI) are two structurally related low molecular weight serine protease inhibitors that share a homologous four-disulfide bridge core harboring the antiprotease domain (Fritz, 1988; Molhuizen and Schalkwijk, 1995; Dijkman, 1995; Schalkwijk et al., 1999). Elafin is a 6-kD elastase-specific inhibitor arising from the proteolytic cleavage of a 12-kD fully active precursor termed pre-elafin or trappin-2. SLPI, also known as mucous protease inhibitor or antileukoprotease, is a broad-spectrum serine protease inhibitor of 11.7 kD.

Both elafin and SLPI are present in the peripheral lung where, together with α1-antitrypsin, they contribute to tightly regulate the destructive action of potent proteolytic enzymes, especially neutrophil elastase (Dijkman, 1995; Tremblay et al., 1996; McElvaney and Crystal, 1997; Senior and Anthonisen, 1998). Beside their antiprotease activity, elafin and SLPI are considered as important modulators of the host defence and inflammatory response. SLPI has antibacterial, antiviral, antifungal and anti-inflammatory properties (Tomee et al., 1998; Grobmyer et al., 2000). Elafin also has antimicrobial activity (Simpson et al., 1999) and could be involved in defence mechanisms against airborne bacteria (Suzuki et al., 2000). Interestingly, the expression of elafin and SLPI is differentially regulated in the peripheral lung. For instance, we have shown that elafin, but not SLPI, is overexpressed in farmer’s lung, a form of hypersensitivity pneumonitis (Tremblay et al., 1996).

The cellular origin of elafin in the alveolar space is unknown (Schalkwijk et al., 1999). In vitro studies suggest that elafin is produced by lung epithelial- and Clara-like cells (Sallenne et al., 1993), but this is not supported by immunohistochemical and in situ hybridisation studies on normal lung tissue (Molhuizen and Schalkwijk, 1995). Recently, Girose and colleagues suggested that at least one alveolar leukocyte population expresses elafin (Griese et al., 1997). We postulated that alveolar macrophages, the most numerous leukocytes in the alveolar space (McLennan et al., 1996), express elafin. The fact that alveolar macrophages are in a high state of activation in hypersensitivity

0939–5075/2001/0300–0291 $ 06.00 © 2001 Verlag der Zeitschrift für Naturforschung, Tübingen • www.znaturforsch.com • D

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.
pneumonitis (Selman, 1998) could explain the increased levels of elafin in bronchoalveolar lavage fluid from subjects with farmer’s lung (Tremblay et al., 1996). The concept that alveolar macrophages express serine protease inhibitors is not new. Indeed, these cells have been known for a while to express α1-antitrypsin (Mornex et al., 1986; Yuan et al., 1992) and α1-antichymotrypsin (Nagareda et al., 1991).

In the lung, SLPI has been localised in structural cells of the large conducting and small peripheral airways (Dijkman, 1995). However, it is unclear whether human alveolar macrophages are also a source of SLPI (Griese et al., 1997). While it is generally accepted that human macrophages (Song et al., 1999; Böhm et al., 1992) do not express this inhibitor, SLPI has been immunolocalised in macrophages of ovarian endometriomas (Suzumori et al., 1999). In contrast to human SLPI, there is no doubt that this inhibitor is expressed in mouse (Jin et al., 1997; Jin et al., 1998; Kawai et al., 1999) and rat (Song et al., 1999; Gipson et al., 1999) cells of the monocytic lineage.

In the present study, we show that alveolar macrophages express elafin and SLPI at both the mRNA and protein level. In contrast to SLPI, the expression of elafin is increased in alveolar macrophages stimulated with Saccharopolyspora rectivirgula, a causative agent of farmer’s lung. We conclude that alveolar macrophages could be a source of elafin in the lung. In addition to lung structural cells, SLPI could also be derived from alveolar macrophages.

Materials and Methods

Isolation and stimulation of human alveolar macrophages

Alveolar macrophages were obtained by bronchoalveolar lavage performed on normal non-smoker volunteers using standard procedure (McLennan et al., 1996). All subjects gave a written informed consent form and the local ethics committee approved the study. After centrifugation of bronchoalveolar lavage fluid, the cell pellet was washed with Hanks’ balanced salt solution (HBSS) and resuspended in RPMI 1640 medium with 10% fetal bovine serum (FBS; Gibco BRL, Grand Island, NY, USA). Total cell counts were determined with a hemocytometer and differential counts on Diff-Quik (Dade Diagnostics, Aguada, Puerto Rico) stained cytcentrifuge cell preparations. Alveolar macrophages were purified by adherence. Briefly, one million macrophages/well were dispensed into 24-well culture plates and incubated for 1.5 h in RPMI 1640 medium (Gibco) containing 10% FBS (Gibco) at 37 °C under 95% air/5% CO₂. Non-adherent cells were removed by washing 4 times with HBSS. Purified alveolar macrophages were either unstimulated or stimulated with 10 μg/ml LPS (Sigma Chemical Co., St. Louis, MO, USA) (Sallenave et al., 1997a) or 50 μg/ml S. rectivirgula antigen (Tremblay et al., 1991) in RPMI 1640 medium with 10% FBS for up to 48 h at 37 °C under 95% air/5% CO₂.

Isolation of human peripheral blood leukocytes

Heparinised venous blood was collected from healthy volunteers. After centrifugation and sedimentation on 6% Dextran (Amersham Pharmacia Biotech, Uppsala, Sweden), monocytes/lymphocytes and granulocytes were purified from each other after a centrifugation on Ficoll-Paque (Amersham Pharmacia Biotech). Monocytes were purified by adherence as for alveolar macrophages. Eosinophils were separated from neutrophils by negative selection using a bead-conjugated monoclonal anti-CD16 antibody and a magnetic cell sorter (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) as previously described (Laviolette et al., 1993).

Reverse transcription – polymerase chain reaction (RT-PCR) analysis

Total RNA was extracted from 6–10 X 10⁶ purified peripheral blood leukocytes and 1–2 X 10⁶ alveolar macrophages using TRIzol reagent (Gibco) and a RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA), respectively. The cDNA was synthesized by reverse transcription reaction of 1 μg of RNA using Moloney Murine Leukemia Virus reverse transcriptase (Gibco). Expression of elafin, SPLI and control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA was then analyzed by PCR. The following mRNA-specific primer pairs (Medicorp, Keystone Labs, Camarillo, CA, USA) were used: Elafin, sense: 5′-CACGGG AGTCTCGTAAAGG-3′ and antisense: 5′-GAA CGA AACAGGCCATCCCG-3′;
SLPI, sense:
5'-CATGAGTCGCGCGCTT-3'
and antisense
5'-GGCAGGAATCAAGCTTTCACAG.
The following GAPDH-specific primers were used
as a positive control for each PCR reaction: sense:
5'-AGTCAACGGATTTCGTAT-3', anti-
sense: 5'-TCTCGCTCCTGGAGATGTTG-3'.
The PCR reaction was allowed to proceed for 30
cycles, each consisting of 30 s at 94 °C, 30 s at
60 °C, 60 s at 72 °C and finally a 10-min extension
at 72 °C. Aliquots of the PCR products were sepa-
rated on an 1% agarose gel. A 100-bp DNA ladder
was included as a size marker. The elafin and SLPI
PCR products were cloned into the pCR®2.1 vec-
tor (Invitrogen, Carlsbad, CA, USA) and their
identity confirmed by sequencing (Service de sé-
quenç e d’ADN, Université Laval, Quebec City,
Canada).

Measure of elafin and SLPI in alveolar
macrophage culture supernatant

Elafin in alveolar macrophage culture superna-
tant was measured with a home-made ELISA as
we described previously (Tremblay et al., 1996).
SLPI was measured with an ELISA kit from R&
D Systems (Minneapolis, MN, USA).

Electrophoresis and immunoblotting of elafin

Alveolar macrophages were directly homogen-
ised in non-reducing loading buffer. Protein analy-
sis by SDS-PAGE and immunoblotting on nitro-
cellulose membranes (Amersham Pharmacia
Biotech) were performed using standard methods
with a rabbit anti-human elafin antiserum (Pep-
tides International, Inc., Louisville, KY, USA) as
the first antibody as we described previously
(Bourbonnais et al., 2000). Chemiluminescence
was detected using ECL reagent (Amersham
Pharmacia Biotech).

Results

The expression of elafin and SLPI mRNA was
evaluated by RT-PCR using mRNA-specific prim-
ers in alveolar macrophages. Both elafin and SLPI
mRNA were constitutively expressed in alveolar
macrophages from four different healthy subjects
(Fig. 1). The identity of the amplified PCR pro-
ducts was confirmed by an independent DNA se-
quencing service (data not shown). The next series
of experiment was performed to determine if this
expression is upregulated in stimulated cells. To do
so, alveolar macrophages were exposed to either
LPS (10 μg /ml) or S. rectivirgula antigen (50 μg/
ml) for increasing periods of time. As shown in
Fig. 2, elafin mRNA expression was increased time
dependently in alveolar macrophages stimulated
with S. rectivirgula antigen compared to un-
stimulated cells. In contrast, LPS did not signifi-
cantly upregulate elafin expression. For identical
experimental conditions, there was no evident
change in the expression of SLPI (data not
shown).

Since S. rectivirgula antigen stimulated the ex-
pression of elafin mRNA in alveolar macrophages,
we next investigated if this was also the case at the

![Fig. 1. Electrophoretic analysis of the RT-PCR products of elafin and secretory leukocyte protease inhibitor (SLPI) transcripts in alveolar macrophages from four healthy subjects. Alveolar macrophages express both elafin and SLPI mRNA. GAPDH was used as a control for each PCR reaction and loading.](image1)

![Fig. 2. An example of the effect of LPS and S. rectivir-
gula antigen on elafin mRNA in alveolar macrophages. Alveolar macrophages were either non-stimulated (NS) or stimulated with 10 μg/ml LPS (LPS) or 50 μg/ml S. rectivirgula antigen (SR) in RPMI 1640 medium with 10% FBS for up to 24 h before extracting RNA. Equal amounts of total cellular RNA (1 μg) were used for each reaction RT-PCR.](image2)
protein level. While unstimulated and LPS-stimulated alveolar macrophages showed undetectable levels of elafin protein as shown by Western blot, intracellular or cell-associated elafin protein accumulated after 24 hours of culture in presence of *S. rectivirgula* antigen (Fig. 3). As control, IL-1β-stimulated A549 human alveolar epithelial cells (Sallenave et al., 1994) showed detectable levels of elafin protein. Despite having shown the presence of intracellular or cell-associated elafin in *S. rectivirgula*-stimulated alveolar macrophages, we were unable to detect the protein even in concentrated cell culture supernatant. In contrast, unstimulated and *S. rectivirgula*-stimulated alveolar macrophages released the same quantity of SLPI, namely 50 ± 6 pg/ml, in culture medium with no change in function of time.

Since the alveolar macrophage expresses elafin and SLPI, we were interested to show if its precursor, i.e. peripheral blood monocyte, also expresses these serine protease inhibitors. Peripheral blood monocytes did not show detectable levels of either elafin or SLPI mRNA (Fig. 4). As a positive control, we showed the expression of elafin and SLPI in peripheral blood neutrophils from the same subjects since these cells are known to express both inhibitors (Sallenave et al., 1997a). Simultaneously, no elafin or SLPI transcripts were detected in eosinophils from the same subjects. These observations were consistently repeated in peripheral blood leukocytes obtained from four healthy subjects.

![Fig. 3](image-url)
Fig. 3. An example of elafin protein expression in alveolar macrophages in function of time. Alveolar macrophages were either non-stimulated (NS) or stimulated with 10 μg/ml LPS (LPS) or 50 μg/ml *S. rectivirgula* antigen (SR) in RPMI 1640 medium with 10% fetal bovine serum (FBS) for up to 48 h before the cells were directly homogenised in non-reducing loading buffer. Proteins, corresponding to 2.5 X 10^5 alveolar macrophages, were separated by SDS-PAGE as described in the Materials and Methods section. Cell culture supernatant from IL-1β-stimulated A549 cells was used as a positive control.

![Fig. 4](image-url)
Fig. 4. Electrophoretic analysis of the RT-PCR products of elafin and SLPI transcripts in peripheral blood eosinophils (E), neutrophils (N) and monocytes (M) from one healthy subject. Only neutrophils expressed elafin and SLPI mRNA glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control for each PCR reaction and loading. This typical set of results was repeated with cells obtained from three additional healthy subjects.

Discussion

Elafin and SLPI are two low molecular weight serine protease inhibitors that, together with α_{1}-antitrypsin, protect the fragile lung architecture from proteolytic, especially elastolytic, damage (Dijkman, 1995; Tremblay et al., 1996; McElvaney and Crystal, 1997; Senior and Anthonisen, 1998). While α_{1}-antitrypsin is mainly synthesized by hepatocytes (Perlmutter, 1993) and SLPI is locally produced by airway structural cells (Dijkman, 1995), the cellular origin of elafin in the lung is yet unknown (Schalkwijk et al., 1999). As far as we know, all published *in vivo* studies failed to show elafin expression in lung structural cells. In light of a recent observation showing elafin expression in unpurified total bronchoalveolar lavage leukocytes (Griese et al., 1997), we postulated that alveolar macrophages are the leukocyte expressing elafin in the peripheral lung. At the same time, we wanted to definitively settle the controversy whether human macrophages express (Suzumori et al., 1999) or not (Griese et al., 1997; Song et al., 1999; Böhm et al., 1992) SLPI.

We showed that alveolar macrophages constitutively express both elafin and SLPI mRNA. However, elafin and SLPI expression is differently regulated in these cells. Elafin, but not SLPI, mRNA levels were increased in alveolar macrophages stimulated with *S. rectivirgula*. This thermoactinomycete is a causative agent of farmer's lung, a form of hypersensitivity pneumonitis (Cormier and Schuyler, 1992). Interestingly, we already
showed that, in contrast to SLPI, elafin levels are increased in bronchoalveolar lavage fluid of subjects with this lung disease (Tremblay et al., 1996). This strongly suggests that alveolar macrophages, but not alveolar epithelial cells, are the cellular source of elafin in farmer's lung. Supporting this concept is our observation that elafin expression in A549 lung epithelial cells, a cell line known to express this inhibitor in vitro (Sallenave et al., 1993), is not increased by S. rectivirgula (Bingle C. D., Bingle L. and Tremblay G. M., unpublished results). A discordant note is that we only showed intracellular or cell-associated elafin protein expression in alveolar macrophages being unable to detect any elafin protein in cell culture supernatant. This suggests that an additional triggering signal is required to make alveolar macrophages externalise elafin.

The results of the present study shed a new light on the controversy whether human macrophages express SLPI. There is a common belief that human macrophages do not express SLPI (Griese et al., 1997; Song et al., 1999; Böhm et al., 1992). In contrast to Griese and colleagues, who were unable to detect SLPI transcripts in bronchoalveolar lavage cells (Griese et al., 1997), we found that alveolar macrophages express SLPI mRNA. The discrepancy between the two studies could be explained by the fact that the cells used in the former study (Griese et al., 1997) were obtained from pre-term neonates of less than 30 weeks gestation, while we used cells from adult subjects. This could mean that SLPI expression in human alveolar macrophages is developmentally regulated as for other functional activities (Sherman, 1997). Not only alveolar macrophages from normal volunteers express SLPI mRNA, but these cells in culture release about 50 pg/ml/10^6 cells/24 h, a value that is the same as the one recently reported as an abstract by Takeyabu and colleagues (Takeyabu et al., 2000).

Having shown that alveolar macrophages express elafin and SLPI, we performed a RT-PCR on purified peripheral blood monocytes from normal subjects. Like others (Böhm et al., 1992; Griese et al., 1997; Song et al., 1999), we did not observe any detectable level of either elafin or SLPI transscripts in these cells. Our results and those from others mentioned above suggest that SLPI expression is the privilege of macrophages, but not monocytes. Compellingly, a thorough reading of the literature shows that SLPI expression has been demonstrated in rat and mouse macrophages, but not monocytes, in all (Jin et al., 1997; Jin et al., 1998; Kawai et al., 1999; Gipson et al., 1999) but one (Song et al., 1999) study. Even in this latter study, rat SLPI mRNA was present at very high levels in peritoneal macrophages, but close to absent in resting peripheral blood monocytes. In contrast to monocytes, purified neutrophils from the same subjects clearly express both inhibitors as previously reported by others (Böhm et al., 1992; Sallenave et al., 1997a), while eosinophils do not.

To the best of our knowledge, the present study provides the first evidence that human alveolar macrophages express elafin and SLPI. Such expression may be physiologically highly relevant. First, expression of elafin and SLPI in alveolar macrophages may constitute a first wave of elastase defence, while inhibitor generation by lung structural cells, including SLPI (Dijkman, 1995) and α1-antitrypsin (Sallenave et al., 1997b), act as a second wave as suggested by a recent study (Gipson et al., 1999). Second, elafin and SLPI may be considered as members of the human alveolar macrophage armamentarium against airborne pathogens considering their antimicrobial properties (Tomee et al., 1998; Simpson et al., 1999). Third, elafin and SLPI expression may suppress alveolar macrophage inflammatory functions by an autocrine mechanism. Indeed, SLPI upregulates the production of IL-10 and TGFβ, two anti-inflammatory cytokines, in macrophages (Sano et al., 2000), interferes with the prostaglandin E_2-dependent production of metalloproteases in monocytes (Zhang et al., 1997), and suppresses the production of nitric oxide and TNFα in SLPI-transfected macrophages (Jin et al., 1997). We are currently investigating whether elafin also shows such anti-inflammatory activities on macrophages.

Regulatory mechanisms orchestrating the expression of serine protease inhibitors in alveolar macrophages and lung structural cells are, most than likely, complex. For instance, alveolar macrophages respond to S. rectivirgula antigen by increasing elafin, but not SLPI, expression (this study), while oncostatin M specifically stimulates α1-antitrypsin in alveolar epithelial cells (Sallenave et al., 1997b). Further studies are under way.
to identify specific triggering signals for elafin and SLPI expression in alveolar macrophages.

Acknowledgements
This work was supported by The Bayer Blood Partnership Fund and Association pulmonaire du Québec. Guy M. Tremblay is a scholar from Fonds de la recherche en santé du Québec/Glaxo Wellcome. Alina Mihaila acknowledges a studentship from Direction de la recherche universitaire, Hôpital Laval.

