Phenolic Compounds of Propolis from Central Chilean Matorral

Orlando Muñoz*a, Raúl C. Peñab, Enrique Ureta, Gloria Montenegrob, Colby Caldwell and Barbara N. Timmermannc

a Faculty of Sciences, Universidad de Chile, Palermas 3425, Santiago de Chile. Fax: 56(2)2713888. E-mail: omunoz@abello.dic.uchile.cl
b Facultad de Agronomía e Ingeniería Forestal, P Universidad Católica, P. O. Box 306, Santiago-22, Chile
c The University of Arizona, Tucson, AZ 85271, USA

* Author for correspondence and reprint requests

Phenolic Compounds of Propolis from Central Chile.

Introduction

Propolis is an important product of the beehive produced by the activity of honey bee (Apis mellifera), gathering and transforming the bud exudate, by mixing it with waxy substances (Serra Vonhevi and V. Coll, 1996).

The mean composition of propolis is 55% resins and balsam, 30% waxes, 10% essential oils and 5% pollen. The chemical pattern of resin or balsam fraction varies considering the botanical and geographical origin, likewise the pattern of pollen grains (Brown, 1995; Walker and Crane, 1987).

This substance, propolis, is employed by the bee in the protection of beehive. It is used to fill cracks, reduce or close openings, strengthen and join cells to seal their hive from the penetration of water, thus creating an unfavorable environment for the development of microorganisms. Propolis also is used as an “embalming” substance to cover hive invaders which bees have killed but cannot transport out the hive (Ghisalberti, 1979). Chemical composition of Chilean propolis shows substances in the series lignane (Valcic et al., 1998).

Recently we isolated further known compounds (Muñoz et al., 2001) from material of Cuncumen, an inland Mediterranean type climate site.

Chemical composition of the propolis appears close to the chemical composition of plants located near to the beehive. For example, the plant species, Baccharis linearis, shows five phenolic compounds found in the propolis obtained in the study site (Valcic et al., 1999).

The site is located in Colliguay a property apart of main highroad in sclerophyllous shrubland of coast. Nevertheless, it is an area where the forest become a matorral (shrubland), with many regenerative states The following representatives are found: Cryptocarya alba, Peumus boldus, accompanied with minor ones Escallonia pulverulenta, Eupatorium glechonophyllum, Maytenus boaria, Quillaja saponaria, Salix humboldtiana and spots of Nothofagus dombeyi (coihue) and N. obliqua (Gajardo, 1993).

In this work, we investigate the botanical origin of samples of propolis by microscopic analysis of the pollen grains and leaf fragments found in the sample, in order to traced native species with chemical as drug potentiality. As part of a research program on the chemistry and botany of propolis from Central Chile, we report the isolation and structure elucidation of seven phenolics.

Material and Methods

General experimental procedures

1H and 13C NMR were acquired on a Varian United –300 (300, 75 MHz) Spectrometer. All proton and carbon assignments are based on HMQC and HMBC experiments.

FAB-MS and high resolution were recorded on a JEOL HX 110. Negative ESI – MS was recorded on a Finnigan MAT TSQ7000. The HPLC system used was equipped with a Varian 9002 pump, a Varian Star 9040 RI detector. HPLC column used were All-

0939–5075/2001/0300–0273 $ 06.00 © 2001 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com · N
tech (Adsorbosil Silica 5 μm 4.6 x 250 mm). Analytical TLC was performed on silica gel GF254 (Merck 5554) and Macherey-Nagel silica gel plates Polygram SIL G/UV254. Spots were detected by UV light and anisaldehyde sulfuric acid as the spray reagent. Column chromatography (cc) was performed with Macherey-Nagel silica gel 60, 50–200 μm.

Biological material

The propolis samples obtained of Colliguay hives, Central Chile, (33° S 71° W) underwent several chemical analyses in the laboratory. The semi-solid sediment that originated was used to find out the botanical origin, by the analysis of the pollen grains and the morphological structures retained in propolis. Five preparations for optical microscopy were made from each sediment, where the different pollen grains were counted and identified, as well as the remains of anatomical structures such as epidermal tissues and trichomes. For this identification there is a reference palinoteque at the Pontificia Universidad Católica de Chile, permanent microscopic preparations and pertinent bibliography (Heusser, 1971; Montenegro, 1984). Preparations for scanning electron microscopy were also made, so as to corroborate the identification of the plant species, observing in greater detail the pollen grains and anatomical structures, and identifying them by comparison with permanent preparations.

Extraction and isolation

Propolis (80 g) was cut into small pieces and extracted three times with EtOAc (3 x 0.6 l) at room temperature for 24 h. After filtration through a paper filter, the filtrates were combined and the solvent evaporated in vacuo. The dried extract was applied directly on a column chromatography (150 x 0.4 cm) on silica gel with an n-hexane/EtOAc gradient (0, 2, 5, 10, 20, 50, 100% EtOAc) yielding five fractions of increasing polarity. Fraction 2 was separated into four subfractions 2.1–2.4 by column chromatography on Silica gel with an n-hexane/EtOAc gradient (0, 2, 5, 10, 20, 50% EtOAc) yielding fraction 2.1 (17.9 mg). Fraction 2.4 was applied to column chromatography on silica gel with hexane/EtOAc gradient (5, 10, 20, 50 and 100% EtOAc) yielding crude 2. Additional purified by crystallization gave Compound 2 (13 mg), 4 (24 mg) and 5 (27 mg).

Fraction four, was applied to column chromatography on silica gel with CH2Cl2–MeOH gradient (0.5, 1.2 and 5% MeOH) yielding crude 12 mg of 6. HPLC with CH2Cl2 MeOH (99.5:0.5 MeOH v/v) yield 7.1 mg of 6. Repurification of this fraction by HPLC (with CH2Cl2 MeOH 0.75:0.5 MeOH) yielded 5.1 mg of 6. Fraction five was applied to column chromatography on silica gel with CH2Cl2-MeOH gradient (0, 0.5, 1, 2, 3%) yielding crude 12 mg of 7. HPLC with MeOH-H2O 4:6 yielded 4.0 mg of 7.

Identification

Compound 1 (pinocembrin) positive high resolution FAB-MS (mNBA) m/z 256.1498 (calc. for C15H12O3, 256, 1481). 1H NMR (CDCl3) δ: 1H RMN (CDCl3) δ: 2.75 (1H, dd, J = 2.8, 17.1 H-3 ec), 3.05 (1H, dd, J = 2.8, 17.1 H-3 ax), 5.42 (1H, dd, J = 2.8, 12.7, H-2), 5.90 (1H, dd, J = 2.0, H-6), 5.92 (1H, dd, J = 2.0, H-8), 7.35 (1H, m, H-2'), 7.43 (2H, m, H-4', H-5'), 7.50 (H-6'm) 13C NMR (CDCl3) δ: 44.30 (C-3), 80.56 (C-2), 96.38 (C-8), 97.33 (C-6), 103.52 (C-10), 127.47 (C-2'), 129.5 (C-6'), 129.83 (C-3', 4', 5') 140.53 (C-1'), 164.79 (C-9) 165.61 (C-5), 168.53 (C-7), 197.42 (C-4).

Compound 2 (acacetin) the compound was identified by co-chromatography and comparison of its NMR data with those of a standard sample. APCI-MS m/z: 285 [M+H]+ corresponding to molecular formula (C16H12O6). 1H NMR (py-d5) δ: 3.75 (3H, s, CH3O), 6.60 (1H, d, J = 2.0 Hz, H-6), 6.70 (1H, d, J = 2 OHz, H-8), 6.91 (1H, s, H-3), 7.22 (1H, d, J = 9, H-3'), 7.12 (1H, d, J = 9, H-5'), 7.95 (1H, d, J = 9, H-2'), 7.95 (1H, d, J = 9, H-6'). 13C NMR (CDCl3) δ: 56.9 (MeO), 93.8 (C-8), 99.3 (C-6), 105.0 (C-3), 107.0 (C-10), 128.1 (C-3', 5'), 123.5 (C-1'), 129.9 (C-2', C-6'), 158.0 (C-9), 163.5 (C-5), 163.6 (C-4'), 165.2 (C-2), 166.0 (C-7), 184.7 (C-4).

Compound 3 (galangin) APCI-MS m/z: 285 [M+H]+ corresponding to molecular formula (C16H12O6). 1H NMR (py-d5) δ: 6.76 (H, d, J = 2, H-6), 6.84 (1H, d, J = 2, H-8), 7.44 (1H, m, H-3'), 7.49 (1H, m, H-4'), 7.55 (1H, m, H-5'), 8.51 (1H, dd, J = 1.7, 8.1)
(H-2'), 8.51 (1H, d, d, J = 1.7, 8.1, H-6'). 13C NMR (CDCl\textsubscript{3}) \(\delta\): 94.74 (C-8), 99.73 (C-6), 104.94 (C-10), 123.67 (C-2'), 123.86 (C-6'), 124.07 (C-3), 124.15 (C-5'), 128.72 (C-4'), 130.23 (C-1'), 136.63 (C-3'), 146.61 (C-2), 157.98 (C-9), 162.84 (C-5), 164.3 (C-7), 170.02 (C-4).

Compound 4 (izalpinin) shows high resolution FAB-MS (m NBA) m/z: 284.1497 (calc. for C\textsubscript{16}H\textsubscript{12}O\textsubscript{5}, 284, 488. 1H NMR (CDCl\textsubscript{3}) \(\delta\): 3.75 (H, s, CH\textsubscript{3}O), 6.35 (1H, d, J = 2.0, H-6), 6.45 (1H, d, J = 2.0, H-8), 8.15 (1H, dd, J = 1.5, J = 8, H-2'), 7.52 (1H, m, H-3'), 7.50 (1H, m, H-4'), 7.50 (1H, m, H-5'), 8.15 (1H, dd, J = 1.5, J = 8, H-6'). 13C NMR (CDCl\textsubscript{3}) \(\delta\): 55.15 (MeO), 92.01 (C-8), 97.83 (C-6), 103.21 (C-10), 126.91 (C-2', 6'), 128.03 (C-3', 5'), 130.04 (C-4'), 130.09 (C-1'), 136.02 (C-3), 145.01 (C-2), 156.48 (C-9), 160.81 (C-5), 164.28 (C-7), 176.12 (C-4).

Compound 5 (APCI - MS m/z: 301 [M+H]+ corresponding to molecular formula (C\textsubscript{16}H\textsubscript{12}O\textsubscript{6}); 1H and 13C NMR in Py coincided with those reported (Urbatsch, et al., 1976; Chari et al., 1977).

Compound 6 (pyrroliptin) APCI-MS m/z: 247 [M+H]+ corresponding to molecular formula (C\textsubscript{14}H\textsubscript{10}O\textsubscript{4}); 1H NMR (CDCl\textsubscript{3}) \(\delta\): 1.78 (3H, s, Me), 1.81 (3H, s, Me), 4.65 (2H, d, J = 6, CH\textsubscript{2}), 5.45 (1H, t, J = 1.5 Hz H olef), 6.28 (1H, d, J = 9.8 Hz, H-1), 7.58 (1H, d, J = 9.8 Hz, H-2), 6.95 (1H, s, Ar), 6.82 (1H, s, Ar). 13C NMR (CDCl\textsubscript{3}) \(\delta\): 151.50 (C-2), 112.09 (C-3), 142.39 (C-4), 110.85 (C-5), 66.29 (C-6), 113.73 (C-7), 113.73 (C-8), 149.29 (C-9), 100.28 (C-10), 25.79 (C-2'), 118.02 (C-3'), 140.21 (C-4'), 25.77 (C-5'), 18.32 (C-6').

Compound 7 (trans-3,5-dihydroxy-1,7-diphenyl-hept-1-ene). APCI-MS m/z: 283 [M+H]+ corresponding to molecular formula (C\textsubscript{15}H\textsubscript{22}O\textsubscript{2}). 1H NMR (CDCl\textsubscript{3}) \(\delta\): 1.85 (2H, m, CH\textsubscript{2}), 2.63 (2H, m, -CH\textsubscript{2}-Ar), 2.71 (2H, m, HOC-CH\textsubscript{2}-COH), 4.02 (1H, m, H gem), 4.65 (1H, m, Hgem), 6.25 (1H, dd, J = 5.7, 1.5, 1.0 Hz, H olef), 6.61 (1H, d, J = 5.7, 1.5, 1.0 Hz H olef), 7.15-7.40 (10H, m, Ar). 13C NMR (CDCl\textsubscript{3}) \(\delta\): 32.10 (C-7), 39.19 (C-6), 68.87 (C-5), 42.62 (C-4), 70.59 (C-3), 141.89 (C-2), 128.63 (C-1), 136.58 (C-1' Ar), 126.50 (C-2' Ar), 128.62 (C-3' Ar'), 127.70 (C-4' Ar), 141.7 (C-1' Ar), 128.45 (C-2' Ar), 128.83 (C-3''), 125.90 (C-4'' Ar).

Results

Seven compounds were isolated and characterized from propolis: flavonoids, 1 pinocembrin, 2 acacetin, 3 galangin, 4 izalpinin and 5 kaempferide, the coumarin prenylethin 6 and a diarylheptene 7, trans-3,5-dihydroxy-1,7-diphenyl-hept-1-ene. In contrast with propolis from Santa Cruz, Quebrada Yaquil (Valcic et al., 1999), rich in lignane, in this study we report many flavanone, flavones, and flavonols.

Pharmacological properties of propolis of many Mediterranean and extra tropical areas of the world are well documented, (Kroll et al., 1993; Marcucci, 1995; Mirzoeva and Calder, 1996; Natarajan et al., 1996; Volper and Elster, 1996, Dugas et al., 2000, Bankova et al., 2000). Nevertheless, pharmacodynamic activity of the propolis of Chilean sources has not yet been studied, with the only exception of the isolation of antibiotic and antifungal compounds (Valcic et al., unpubl. data).

Pinocembrin and galangin have antibacterial activity (Villanueva et al., 1970), pinocembrin has also fungicidal activity (Metczer et al., 1997) and local anesthetic activity (Paintz et al., 1979) while acacetin has antiinflammatory activity (Bankova et al., 1983).

The flavanone pinocembrin, the flavone acacetin and the flavonol galangin have been previously identified in many honey samples from different geographical and botanical origins (Soler et al., 1999). Prenyletin, formerly isolated from Haplopappus baylahuen has antiinflammatory activity (Schwenker et al., 1967).

The pollen frequency pattern of Colliguay site shows the following major species as resource for propolis: Escallonia pulverulenta (35.19), Salix humboldtiana (21.78), Eucalyptus globulus (19.55) and minor ones Eupatorium glechonophyllum (7.26), Quillaja saponaria (6.7), Peumus boldus (5.02). Also were detected Nothofagus dombeyi (2.23), Nothofagus obliqua (0.55), Cryptocarya alba (0.55), Maytenus boaria (0.55) and Pinus radiata (0.55).

Probably honeybees obtain resins with pinocembrin from Escallonia pulverulenta. This flavanone was formerly reported from this source (García et al., 1990). Chemistry of Salix humboldtiana, Chilean willow, is poor known only salicin has been reported (Gupta, 1995).

Propolis of Chile, is collected of common species of Mediterranean type climates, viz. Poplar, willows, but also from many native trees and shrubs including Quillaja saponaria (6.7), Peumus boldus (5.02), and many others such as Quercus chilensis, Peumus boldus, and several others such as Salix humboldtiana, Maytenus boaria, Nothofagus dombeyi, Nothofagus
obliqua, Peumus boldus, Quillaja saponaria, and Salix humboldtiana.

Interestingly, benzophenones are compounds isolated from Chilean sources of propolis, formerly detected in material from Venezuela, and recently from material of Cuba, three very different and isolated sites, by both climatic, and vegetation or floristic factors (Barberán et al., 1993, Cuesta Rubio et al., 1999). Recently, was been reported a prenylated chromane derivative from methanolic extract of Brazilian propolis. Prenylated p-coumaric acids and acetophenones are secondary metabolites, typical for south American Baccharis species (Bohlmann et al., 1981). In tropical regions there are no poplars and birches, and bees have to find new plant sources of propolis. Cistus was identified in border areas with almost tropical climate, in Tunisia (Martos et al., 1997). Baccharis spp. are a major source of tropical propolis, in addition to Clusia and Araucaria heterophylla (Bankova et al., 1996; Banskota et al., 1998). Clusia species, were reported from tropical sources (Banskota et al., 1998; Thomas Barberán et al., 1993).

Acknowledgements

This study was supported by the ICBG “Bioactive Agents from Dryland Plants of Latin America” Grant 2U01 TW 00316-08 (to B. Timmermann) from the National Institute of Health (NIH), the National Science Foundation (NSF) as well as and UDLP “Development of Sustainable Agriculture in Arid Region of Chile” Grant PCE 5063-A-00-3033-00 from the US Agency for International Development (USAID) (to B. Timmermann) and Fondecyt 1980967 (To G. Montenegro). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH, NSF or USAID and Fondecyt.

