Oxidation of Plasmalogens Produces Highly Effective Modulators of Macrophage Function

Helmut Heinle*, Nadja Gugeler, Roswitha Felde, Dagmar Okech, Gerhard Spiteller

a Institute of Physiology I, University of Tübingen. Gmelinstr. 5, 72076 Tübingen. Fax: 07071/29 3073. E-mail: helmut.heinle@uni-tuebingen.de
b Chair of Organic Chemistry, University of Bayreuth

* Author for correspondence and reprint requests

Z. Naturforsch. 55c, 115–120 (2000); received September 24/October 22, 1999

Plasmalogen, Plasmalogen Epoxide, α-Hydroxyaldehyde, Macrophages, Oxidative Burst

Model derivatives of plasmalogens and chemically synthesized oxidative degradation products as found e.g. during oxidation of low density lipoproteins show strong effects on phagocytosis induced secretion of reactive oxygen species of macrophages which was measured by luminol-enhanced chemiluminescence. Whereas a plasmalogen epoxide showed enhancing effects in submicromolar range, inhibition was found with higher concentrations as well as with α-hydroxyaldehydes. The substances showed only little effects on the non-cellular ROS-dependent chemiluminescence of the reaction between hydrogen peroxide and opsonized zymosan and no cytotoxic effects under the assay conditions used. These results show that oxidative modification and degradation of plasmalogens occurring also under pathophysiological situations in vivo produces effective modulators of macrophage function which could be important; e.g. during inflammation or atherogenesis.

Introduction

Plasmalogens are ubiquitously occurring lipid compounds present in the glycerophospho-lipid fraction (Horrocks and Sharma, 1982). Although they form a considerable proportion of cell membranes and plasma lipoproteins their biological functions are not well established.

Besides their distinct effect on the physico-chemical properties of cell membranes, influences on activities of ion channels and enzymes as well as the HDL-mediated cholesterol-efflux were described (Lohner et al., 1991; Groß, 1984; Horrocks and Fu, 1978; Mandel et al., 1998; Williams and Ford, 1997; Yang et al., 1996). Plasmalogens were also discussed to play a role as a reservoir of prostaglandin and thromboxane precursors (Groß, 1984; Horrocks and Fu, 1978), however, a main function is seen in their antioxidative action (Zoeller et al., 1999; Brosche and Platt, 1998).

Especially it was shown, that plasmalogens are scavengers for singlet oxygen (Zoeller et al., 1988) and inhibitors of metal-catalyzed lipid peroxidation (Zommara et al., 1995). Furthermore, they are preferentially decomposed during oxidation of LDL and other unsaturated lipids (Engelmann et al., 1994; Reiss et al., 1997; Khaselev and Murphy, 1999).

Alterations in plasmalogens were found under various pathological conditions: e.g. in atherosclerotic vessel wall, in plasma lipoproteins of patients with cerebrovascular diseases, or in the cell membrane of erythrocytes of patients with chronic renal failure decreased contents of plasmalogens were observed (Miller et al., 1964; Hoerrmann et al., 1991; Stenvinkel et al., 1998).

Similarly, a decrease of plasmalogens but an increase in plasmalogen epoxides and in the corresponding hydrolysis products, α-hydroxyaldehydes, respectively, was determined in LDL and HDL during oxidative modification (Felde and Spiteller, 1995; Jira and Spiteller, 1996). Formation of α-hydroxyaldehydes was also found in subcellular fractions of bovine liver after epoxidation of plasmalogens (Loidl-Stahlhofen et al., 1995), and in the aged human brain (Weisser et al., 1997).

Since oxidation and modification of LDL are regarded as key events in atherogenesis (Steinberg...
et al., 1989; Witztum, 1994), oxidation products of plasmalogens could be involved in the underlying mechanisms of lesion formation. Therefore we were interested in the effects of several chemically synthetized oxidized model derivatives of plasmalogens on macrophage function as determined by measuring phagocytosis induced release of reactive oxygen species (ROS).

Experimental procedures

The following model compounds were used for the experiments described below:

I, 1-0-(hexadec-1-etyl)-2,3-diacetylglycerol (synthesis in (Knörr and Spiteller, 1990), corresponding to a model plasmalogen)
II, 1-0-tetradecyl-2,3-diacetylglycerol (synthesis in (Knörr, 1989), corresponding to a "plasmalogen" with saturated side chain at C1)
III, 1-0-(1',2'-epoxyhexadecyl)-2,3-diacetylglycerol (synthesis in (Meyer and Spiteller, 1993), a plasmalogen epoxide)
IVA, 2-acetoxyheptanal
IVB, 2-acetoxynonanal
(synthesis in Lutz (1991), 6-hydroxyaldehydes as formed by oxidative decomposition of plasmalogens)
V, 1,2,3-trihexadecylglycerol (tripalmitin/Sigma, München/FRG)

Stock solutions were prepared using dimethylsulfoxide (DMSO). The final concentrations are given in the results.

Alveolar macrophages were isolated by alveolar lavage (Heinle et al., 1992) from normal fed male New Zealand rabbits (2.5–3.5 kg body weight) sacrificed for other investigations. Shortly, 4 volumes of 50 ml of isotonic NaCl solution were gently pressed into the lung via an intratracheal tube. The washing fluid of each animal was collected, the cells were washed twice, counted and finally suspended in physiologic salt solution (PSS) (composition (mM): NaCl 119, KCl 4, CaCl₂ 1.5; MgSO₄ 1.2, NaH₂PO₄ 1.5, N-2-hydroxyethylpipera-

azine-N’-2-ethansulfonic acid (Hepes) 10, glucose 5, pH 7.4) at a density of 2x10⁶ cells/ml.

Phagocytosis was induced by incubation of macrophages with zymosan (Sigma, München/FRG) opsonized by incubation with plasma as described and secretion of ROS was detected by luminol-enhanced chemiluminescence (Heinle and El-Dessouki, 1995). Shortly after incubation with 0.5–2 mM H₂O₂ in the presence of luminol. The effects on the generated chemiluminescence which is mainly due to the occurrence of superoxide anions can be quantified using a photon counter.

Furthermore, in separate incubation experiments cytotoxicity was evaluated by determining the release of lactate dehydrogenase (LDH) from 10⁷ cells in each case into the incubation medium (0.4 ml) (Okech, 1999). The activity of the enzyme found after 25 min at 37 °C in the medium was related to that which could be released from the same number of cells by 0.1% Triton X 100.

Results

In alveolar macrophages obtained form normal fed rabbits the luminol-enhanced chemiluminescence can be increased approximately 4-fold with interindividual variations by addition of opsonized zymosan. Using this parameter which indicated phagocytosis-stimulated production of ROS effects on macrophage function can be elucidated.
The results of these experiments are given in Table I. It is obvious that the saturated derivative II and tripalmitin (V) showed slight activating effects on ROS production within the concentration range used which might be caused by an unspecific effect of the glycerol compounds on the cell membrane. Incubation of the cells with the unsaturated derivative I (corresponding to a natural plasmalogen) showed at low concentrations (<5 μM) a similar increasing effect, however, higher concentrations reduced remarkably the secretion of ROS. This dual effect is even more pronounced with the epoxide (substance III). At 0.2 μM a strong activation of ROS release was found whereas increasing concentrations had inhibitory effects. At 200 μM a complete loss of zymosan induced activation was seen.

Exclusively inhibition of radical secretion of macrophages was found in the experiments with two model compounds of α-hydroxyaldehydes (substance IVa and b). Even in submicromolar concentrations (0.5 μM) these compounds could attenuate macrophage activation by zymosan.

In representative experiments using lucigenine, which indicates specifically superoxide anions, similar effects of the test substances on the activation of macrophages were obtained (results not shown).

In order to exclude direct enhancing or suppressing effects of the tested compounds with the chemiluminescence reaction, the substances III and IVa were also tested in a cell-free radical generating system consisting of H₂O₂ and opsonized zymosan. The results in Table II show that luminol-enhanced chemiluminescence itself is not affected by both substances.

Furthermore, in order to rule out the possibility that the inhibition of radical secretion as found with the aldehydes or the epoxide could be due to injury to the cells, cytotoxicity was determined for substances III and IVa by determining the LDH release into the incubation medium. The results show that both substances applied in concentrations of 10 and 100 μM, respectively, induce LDH release which amounts to 6 and 10% of that evoked by treatment with 0.1% Triton X100. Since under control conditions 4–6% were found, the cytotoxic effect of the substances seems to be negligible under the conditions used.

Discussion

Although superoxide anions and myeloperoxidase-dependent products were found, the whole spectrum of the radicals secreted by phagocytes and detected by luminol-enhanced chemilu-

Table I. Influence of derivatives of plasmalogens on zymosan-induced release of ROS of alveolar macrophages.

<table>
<thead>
<tr>
<th>Substance</th>
<th>conc. [μmol/l]</th>
<th>0.05</th>
<th>0.5</th>
<th>5</th>
<th>50</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>plasmalogen rel.activ. (%)</td>
<td>115</td>
<td>136*</td>
<td>137</td>
<td>76*</td>
<td>19**</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>± S. D.</td>
<td>20</td>
<td>18</td>
<td>27</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>saturated deriv. rel.activ. (%)</td>
<td>112</td>
<td>120</td>
<td>106</td>
<td>176*</td>
<td></td>
</tr>
<tr>
<td>(n = 3)</td>
<td>± S. D.</td>
<td>6</td>
<td>25</td>
<td>25</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>epoxide rel.activ. (%)</td>
<td>0.02</td>
<td>0.2</td>
<td>2.0</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>± S. D.</td>
<td>12</td>
<td>21</td>
<td>18</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>IVa</td>
<td>2-acetoxyheptanal rel.activ. (%)</td>
<td>105</td>
<td>160*</td>
<td>128*</td>
<td>72*</td>
<td>11**</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>± S. D.</td>
<td>30</td>
<td>26</td>
<td>20</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>IVb</td>
<td>2-acetoxynonanal rel.activ. (%)</td>
<td>115</td>
<td>72*</td>
<td>57**</td>
<td>48**</td>
<td>21**</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>± S. D.</td>
<td>32</td>
<td>19</td>
<td>16</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>V</td>
<td>tripalmitin rel.activ. (%)</td>
<td>111</td>
<td>109</td>
<td>115</td>
<td>144*</td>
<td></td>
</tr>
<tr>
<td>(n = 4)</td>
<td>± S. D.</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

The untreated controls in each series obtained with cells of different animals are 100%.

For statistical calculations (t-test) the absolute values were used: significance of the effects.

* p<0.05; ** p<0.01.
Table II. Influence of oxidized derivatives of plasmalogens on zymosan-induced production of ROS by hydrogen peroxide.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Conc. [μmol/l]</th>
<th>0.2</th>
<th>2.0</th>
<th>20.0</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>III epoxide</td>
<td>rel. chemiluminescence</td>
<td>108</td>
<td>122</td>
<td>124</td>
<td>120</td>
</tr>
<tr>
<td>IVa 2-acetoxyheptanal</td>
<td>rel. chemiluminescence</td>
<td>102</td>
<td>102</td>
<td>120</td>
<td>130</td>
</tr>
</tbody>
</table>

The values are mean values of 2 independent determination which differed not more than 8% in each case. Chemiluminescence of the control assay (measured as counts per 10 min) was related to 100.

Chemiluminescence is still not completely described (Johansson and Dahlgren, 1989; Vilim and Wilhelm, 1989). However, since similar results were found in experiments with lucigenine which indicates specifically O2− (Okech, 1999) the effects of the substances tested here seem to be mostly attributed to the secretion of this reactive oxygen species.

Whereas the unsaturated model plasmalogen and the epoxide reveal biphasic effect with stimulation at low, inhibition with high concentrations, the α-hydroxyaldehydes show exclusively inhibitory effects. Since one can assume that the macrophages are able to metabolize the test substances added, it seems possible that primary oxidation products as e.g. epoxides, but also hydroperoxides are responsible for stimulation of radical secretion, probably by mechanisms mediated by cytoplasmic Ca2+ ions. This possibility is supported by the fact, that neutrophiles and lung macrophages are able to produce epoxides of linoleic acid which show strong cellular activity (Hayakawa et al., 1986; Ozawa et al., 1986).

The decreasing effect produced by the α-hydroxyaldehydes seems to be related with inhibition of the NADPH-oxidase reaction. In parallel experiments with the reconstituted enzyme of granulocytes a direct interaction with similar aldehydes suppressing the enzyme activity was found (Okech, 1999). Again, suspecting oxidative metabolism of compounds I and III in macrophages, their inhibitory action could also be due to α-hydroxyaldehydes formed during the incubation time.

Whether the α hydroxyaldehydes used in the present experiments were active in the acetylated or in the hydroxy form cannot be answered. However, since acetylated α hydroxyaldehydes were found to be hydrolysed in a cell proliferation test probably due to secreted hydrolases (Kern et al., 1992), the formation by macrophages of the deacetylated form can be assumed.

Similarly, there are open questions concerning the concentrations of plasmalogen epoxide or α hydroxyaldehydes which can be expected under in vivo conditions. With respect to human arterial intima, which contains in the interstitial fluid approx. twice the plasma concentration of LDL (Smith and Ashall, 1983), a simplified calculation shows that during oxidation of LDL μM concentrations of hydroxyaldehydes can be expected. (Under in vitro oxidation 25 μg hydroxyaldehyd per g LDL were determined (Felde and Spiteller, 1995)).

In conclusion, the presented results show that plasmalogens cannot be regarded to function only as antioxidants but that their epoxidation and oxidative degradation produce compounds which are very effective modulators of ROS release of macrophages during phagocytosis. Depending on the chemical structure activation as well as inhibition of ROS release were found with submicromolar concentrations. Therefore similar effects can be expected when plasmalogens originating either from lipoproteins or cell membranes are oxidized in vivo thus contributing essentially to different pathophysiologic mechanisms, e.g. in atherogenesis, inflammation or immum responses.
H. Heinle et al. • Modulators of Macrophages by Plasmalogen Oxidation 119

H. Heinle et al. ■ Modulators of Macrophages by Plasmalogen Oxidation 119

