Selective Induction of Glutathione S-Transferase Subunits in Wheat Plants Exposed to the Herbicide Acifluorfen

Sophie Pascal\(^a\), Gábor Gullner\(^b\), Tamás Kömives\(^b\) and René Scalla\(^a\),*
\(^a\) INRA, Laboratoire des Xénobiotiques, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse cedex 9, France. Fax: (33)-5-61 28 52 44. E-mail: rscalla@toulouse.inra.fr
\(^b\) Plant Protection Institute of the Hungarian Academy of Sciences, H-1022 Budapest, Herman Otto u. 15, Hungary
* Author for correspondence and reprint requests

Z. Naturforsch. 55c, 37–39 (2000); received October 8/November 10, 1999

Acifluorfen, Glutathione S-Transferase, Herbicide, Oxidative Stress, Wheat

Introduction

The glutathione S-transferase (GST, E.C. 2.5.1.18.) isoenzyme family has well-defined roles in detoxification reactions in plants (Marrs, 1996; Dixon \textit{et al.}, 1998; Sommer and Böger, 1999). These enzymes are homo- or heterodimeric combinations of different subunits. GST isoenzymes catalyze the conjugation of glutathione (GSH) to various xenobiotics (including numerous herbicides) and their electrophilic metabolites to produce less toxic and more water-soluble thioether conjugates. They are also capable of catalyzing the breakdown of toxic lipid hydroperoxides and thereby contribute to the protection of plants against oxidative membrane damage (Marrs, 1996). The nitrodiaryl ether herbicide acifluorfen (5-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-nitrobenzoic acid) is known to induce the accumulation of protoporphyrin IX and other tetrapyrrole derivatives in plant leaves (Matringe and Scalla, 1988; Sandmann and Böger, 1988). In the presence of light and molecular oxygen, the accumulation of protoporphyrin IX results in the increased production of reactive oxygen species, photodioxidative membrane damage and, ultimately, cell death. Acifluorfen and other nitrodiaryl ether herbicides are metabolized via GSH-conjugation in plants, and their selective action is primarily due to differences in herbicide detoxification rates (Kömives and Gullner, 1994). Exposure to acifluorfen and to the structurally related herbicide ox-...
tracts were measured by the method of Bradford (1976) using bovine serum albumin (BSA) as a standard. The total amount of chlorophylls was measured in 80% acetone extracts following the equation used by Arnon (1949).

Results and Discussion

Exposure of wheat seedlings to 50 μM acifluorfen in the light resulted in an immediate inhibition of growth. Fresh weights of shoots increased by 126% in five days for control seedlings, and only by 43% for acifluorfen-treated seedlings. During the same period, root fresh weight increased by 45% for control plants, and only by 3% for acifluorfen-treated plants. After 2 days of treatment, the fresh weights of shoots and roots of the herbicide-treated plants amounted to 68.8 ± 3.0% and 85.6 ± 11.8% of the controls, respectively. Acifluorfen treatment also induced photobleaching in shoot tissues. Bleaching was first visible 2 days after treatment, and concerned especially the top half of the primary leaves at day 5. In control shoots, the chlorophyll content slightly increased from day 0 to day 5 (from 1.19 to 1.44 mg per g fresh weight). In acifluorfen-treated shoots, it decreased during that period from 1.19 to 0.807 mg per g fresh weight, and it amounted to 86.2% of the controls after 2 days of treatment.

At the same time as these phytotoxic effects, acifluorfen treatments led to the marked induction of GST activities, particularly in shoots. The GST activity in acifluorfen-treated shoots was 2.8-fold higher than in controls two days after the herbicide treatment (Fig. 1). This increase persisted at least until 5 days following exposure, since at that time the activity in treated shoots was 2.9 times higher than in controls. GST activity was induced also in the roots, but to a much lesser extent than in the shoots.

To characterize the effect of acifluorfen on wheat GST enzymes, the total GST content was extracted from shoot tissues, purified by affinity chromatography and the GST subunit composition was investigated by reversed-phase HPLC (Fig. 2). In accordance with earlier studies (Pascal and Scalla, 1999), at least six major GST subunits, numbered 2, 3, 4, 5, 8 and 9, were found in the extracts of untreated shoots. Their molecular masses ranged between 23140 and 24958 Da (Pascal and Scalla, 1999). Acifluorfen treatment (50 μM) did not result in the appearance of any new subunits. However, the levels of the major subunits 2 and 3 were selectively increased, and 2 days after treatment their peak areas were 3.2- and 3.9-fold higher than in untreated controls, respectively (Fig. 2). Several unidentified minor peaks eluting at 34–37 mins were also more abundant in acifluorfen-treated samples, but they have not been characterized. The levels of the other major subunits were unchanged or only slightly modified by acifluorfen.

Limited information is available about GST isoenzymes in wheat (Cummins et al., 1997; Pascal and Scalla, 1999). Pathogen attack was shown to induce the transcription of a gene coding for a 29 kDa GST subunit. Two more GST subunits of apparent molecular masses of 25 and 26 kDa were also identified, which were inducible by heavy metals and herbicides (Mauch and Dudler, 1993). Earlier studies showed that subunits 2 and 3 observed in our experiments possess molecular masses of 24924 and 24958 Da, respectively (Pascal and Scalla, 1999). In addition, the N-terminal
Fig. 2. Reversed-phase HPLC analysis of glutathione S-transferase preparations from wheat shoots after purification by affinity chromatography. Herbicide-treated seedlings were exposed to 50 μM acifluorfen for 2 days. All samples were from 1 g fresh weight shoot tissues. The GST subunit peaks are labelled according to their elution order. Representative elutions chosen from several experiments are shown.

The amino acid sequence of wheat subunit 2 was shown to be very close to that of maize GST 27, which is inducible by chemicals (Pascal et al., 1998). A GST isoenzyme consisting of subunit 2 and 3 purified from wheat shoot was able to metabolize the diphenyl ether herbicide fluorodifen, but did not exhibit any glutathione peroxidase activity (Pascal and Scalla, 1999). These results suggest that the wheat GST subunits 2 and 3 induced by acifluorfen treatment could participate rather in the detoxification of acifluorfen than in the protection against the oxidative stress caused by the herbicide.

Acknowledgements

The financial aid of the French-Hungarian “Balaton” Programme (supported jointly by the French Ministry of Foreign Affairs and the Hungarian National Committee for Technological Development) is gratefully acknowledged. This work was supported by grants from Hungarian Scientific Research Fund (OTKA), and from Région Midi-Pyrénées. We are grateful to Dr. M. Bernard (INRA, Clermont-Ferrand, France) for supplying the wheat seeds used in this study.

Knörzer O. C., Durner J. and Böger P. (1996), Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol. Plant. 97, 388–396.