A New Oxyprenyl Coumarin and Highly Methylated Flavones from the Exudate of *Ozothamnus lycopodioides* (Asteraceae)

Angel Rumbero\(^a\), Fco. Javier Arriaga-Giner\(^b\) and Eckhard Wollenweber\(^c\,*\)

\(^a\) Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

\(^b\) Tabacalera S. A.; Centro I+D, E-28012 Madrid, Spain

\(^c\) Institut für Botanik der Technischen Universität, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. Fax: 06151/166878. E-mail: Wollenweber@bio.tu-darmstadt.de

\(*\) Author for correspondence and reprint requests

Z. Naturforsch. 55c, 1–4 (2000); received November 5, 1999

Ozothamnus lycopodioides, Asteraceae, Leaf and Stem Exudate, Flavones, New Oxyprenyl Coumarin

A new oxyprenyl coumarin was isolated from the lipopholic exudate of *Ozothamnus lycopodioides*. Its structure was established as 7-(3,3'-dimethylallyloxy)-5-hydroxy-6-methoxy-coumarin from its UV, MS and NMR spectral data, especially two dimensional experiments. In addition to six earlier reported flavonols, we found four highly substituted flavones, including two rare methylenedioxyflavones.

The genus *Ozothamnus* (Asteraceae) comprises some 50 species, native to Australia, New Zealand and New Caledonia (Brem er, 1994). A previous paper dealt with rare flavonoids occurring in the leaf and stem exudates of two *Odixia* and eleven *Ozothamnus* species from Australia. *O. lycopodioides* was reported to exhibit six flavonols, namely herbacetin-3,7,8,4'-tetramethyl ether, quercetin-3 methyl ether, quercetin-3,7-dimethyl ether, quercetagetin-3,6-dimethyl ether, gossypetin-3,7,8-trimethyl ether and gossypetin-3,7,8,3',4'-pentamethyl ether (Wollenweber et al., 1997). In addition, we now identified four flavones and a new oxyprenylated coumarin.

Material and Methods

Branches of *Ozothamnus lycopodioides* were collected at Black Bridge Gulli, Tasmania (42°34' S 147°49' E) on 26. Jan. 1989. A voucher (Davis 1259) is kept at the Herbarium Australiense in Canberra, Australia (CANB). Air-dried plant material was briefly rinsed with acetone to dissolve the lipophilic exudate. The concentrated solution was then subjected to column chromatography on Sephadex LH-20, eluted with methanol, to separate the phenolic fractions from the predominant terpenoids. Fractions containing flavonoid aglycones were concentrated and the residue (3.1 g) was further chromatographed on "flash" silica-gel using the binary mixture ethyl acetate – hexane (3:1 v/v), furnishing 1 (165 mg), 2 (52 mg), 3 (210 mg), 4 (360 mg) and 5 (23 mg).

M.p.'s are uncorrected. \(^1\)H NMR: 300 MHz, TMS as int. Standard. \(^13\)C NMR : 75.5 MHz, solvent as internal standard. 2D NMR experiments were performed using standard Bruker pulse sequences. MS: EI (70 eV), VG AutoSpec. IR: KBr, Bruker Vector 22. UV: MeOH, Hewlett Packard 8453.

5,6,7,8-tetramethoxy-3',4'-methylendioxyflavone (1). Colourless crystals (MeOH), mp 169–170 °C. TLC (SiO\(_2\) 60): Rf 0.55 (AcOEt-hexane, 3:1 v/v). IR, UV and \(^1\)H NMR as literature (Ngo Le-Van et al., 1979). \(^13\)C NMR (CDCl\(_3\)), \(\delta\) ppm: 61.50 (CH\(_3\)), 61.66 (CH\(_3\)), 61.89 (CH\(_3\)), 62.10 (CH\(_3\)), 101.79 (CH\(_2\)), 105.89 (CH), 106.92 (CH), 108.65 (CH), 114.70 (C), 120.94 (CH), 125.36 (C), 137.94 (C), 143.98 (C), 147.50 (C), 148.20 (C), 148.34 (C), 150.35 (C), 151.29 (C), 160.64 (C), 177.06 (C).

5,6,7,8,5'-pentamethoxy-3',4'-methylendioxyflavone (2). Yellow crystals (MeOH), mp 185–187 °C. TLC (SiO\(_2\) 60): Rf 0.50 (AcOEt-hexane, 3:1 v/v). IR, UV, \(^1\)H NMR as literature (Ngo Le-Van et al., 1979). \(^13\)C NMR (CDCl\(_3\)), \(\delta\) ppm: 56.70 (CH\(_3\)), 61.63 (CH\(_3\)), 61.78 (CH\(_3\)), 61.94 (CH\(_3\)), 62.22 (CH\(_3\)), 61.63 (CH\(_3\)), 61.78 (CH\(_3\)), 61.94 (CH\(_3\)), 62.22 (CH\(_3\)), 100.43 (CH), 102.27 (CH\(_2\)), 106.53 (CH), 107.31 (CH), 114.82 (C), 125.89 (C), 137.99 (C), 138.27 (C), 143.88 (C), 144.13 (C),
A. Rumberto et al. • A Coumarin and Flavones from Ozothamnus lycopodioides

147.61 (C), 148.36 (C), 149.54 (C), 151.46 (C), 160.61 (C), 177.20 (C).

5,6,7,8,3',4'-hexamethoxyflavone (3). Yellow crystals, mp. 130–131 °C (MeOH). TLC (SiO$_2$ 60): Rf 0.31 (AcOEt-hexane 3:1 v/v). IR, UV, 1H NMR as literature (Ngo Le-Van et al., 1979). 13C NMR (CDCl$_3$), δ ppm: 55.64 (CH$_3$), 55.78 (CH$_3$), 61.35 (CH$_3$), 61.50 (CH$_3$), 61.65 (CH$_3$), 106.50 (CH), 108.24 (CH), 110.97 (CH), 119.52 (C), 119.65 (C), 126.50 (C), 137.71 (C), 143.76 (C), 147.39 (C), 148.06 (C), 148.97 (C), 151.11 (C), 151.63 (C), 160.69 (C), 176.95 (C).

5,6,7,8,3',4',5'-heptamethoxyflavone (4). Yellow crystals, mp 104-105 °C. TLC (SiO$_2$ 60): Rf 0.40 (AcOEt-hexane 3:1 v/v). IR, UV, 1H NMR as literature (Ngo Le-Van et al., 1979). 13C NMR (CDCl$_3$), δ ppm: 56.02 (2xCH$_3$), 60.81 ' (CH$_3$), 61.31 (CH$_3$), 61.49 (CH$_3$), 61.60 (CH$_3$), 103.04 (2xCH), 107.41 (CH), 114.63 (C), 126.48 (C), 137.80 (C), 140.85 (C), 143.96 (C), 147.52 (C), 148.21 (C), 151.35 (C), 153.38 (2xC), 160.55 (C), 177.07 (C).

7-(3,3'-dimethylallyloxy)-5-hydroxy-6-methoxy-coumarin (5). Yellow crystals, mp 143–145 °C. TLC (SiO$_2$ 60): Rf 0.82 (AcOEt-hexane 3:1 v/v). UV (MeOH) λ_{max} nm (log ε): 210 (4.47), 325 (4.10); IR ν_{max} cm$^{-1}$: 3298 (OH), 1703 (C = O), 1624 (C=C). MS (70 eV) m/z (rel. int.): 276 [M+](9), 208 (100), 193 (70), 165 (8), 137 (7), 95 (12). For 1H NMR (CDCl$_3$ and C$_6$D$_6$) and 13C NMR data see Table I.

Results and Discussion

The lipophilic exudate produced by aerial parts of Ozothamnus lycopodioides was shown previously to contain six flavonol aglycones. From remaining fractions we now isolated the methylenedioxyflavones linderoflavone B (lucidin dimethyl ether) (1), eupalestin (2), nobiletin (3), and 5'-methoxynobiletin (4). Their structures were assigned by comparison with spectral data described in literature (1: Lee et al., 1965; 2: Ngo Le-Van et al., 1979; 3: Tseng, 1938; 4: Ngo Le-Van et al., 1979).

Compound 5 was obtained as a yellow solid. The EI mass spectrum of 5 showed a weak M$^+$ ion at m/z 276, which by accurate mass measurement corresponded to a molecular formula of C$_{15}$H$_{16}$O$_5$.

Both, 1H NMR and 13C NMR spectra, contained too many signals to fit the above mentioned formula. In the 1H NMR spectrum of 5 (recorded in CDCl$_3$), the doublets at δ 6.19 and 7.96 (ν = 9.6 Hz) could be attributed to H-3 and H-4 and the low-field nature of the chemical shift of H-4 suggested the presence of an oxygenated group at C-5 (Murray et al., 1982). A multiplet at δ 5.46 (1H), a doublet at ν 4.60 (2H, ν = 6.6 Hz) and two sin-

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (CDCl$_3$)</th>
<th>1H (C$_6$D$_6$)</th>
<th>1C NMR data see Table I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.19 (d, 9.6)</td>
<td>5.73 (d, 9.6)</td>
<td>161.59</td>
</tr>
<tr>
<td>3</td>
<td>7.96 (d, 9.6)</td>
<td>7.36 (d, 9.6)</td>
<td>111.38</td>
</tr>
<tr>
<td>4</td>
<td>145.69</td>
<td>131.81</td>
<td>154.84</td>
</tr>
<tr>
<td>5</td>
<td>154.84</td>
<td>131.81</td>
<td>154.84</td>
</tr>
<tr>
<td>6</td>
<td>6.42 (s)</td>
<td>6.00 (s)</td>
<td>93.25</td>
</tr>
<tr>
<td>7</td>
<td>151.57</td>
<td>151.62</td>
<td>151.57 (9), 161.59 (2)</td>
</tr>
<tr>
<td>8</td>
<td>151.57</td>
<td>151.57</td>
<td>151.57 (9), 161.59 (2)</td>
</tr>
<tr>
<td>9</td>
<td>102.41 (10), 161.59 (2)</td>
<td>93.25 (8), 145.69 (5), 151.57 (9), 161.59 (2)</td>
<td>6.43 (s)</td>
</tr>
<tr>
<td>10</td>
<td>151.57</td>
<td>151.57</td>
<td>161.59 (2)</td>
</tr>
<tr>
<td>1'</td>
<td>151.57</td>
<td>151.57</td>
<td>151.57 (9), 161.59 (2)</td>
</tr>
<tr>
<td>2'</td>
<td>4.60 (br d, 6.6)</td>
<td>3.91 (br d, 6.6)</td>
<td>6.93</td>
</tr>
<tr>
<td>3'</td>
<td>5.46 (m)</td>
<td>5.13 (m)</td>
<td>1.61.61 (2'), 139.02 (3'), 154.84 (7)</td>
</tr>
<tr>
<td>CH$_3$-O</td>
<td>1.75 (d, 0.8)</td>
<td>1.21 (br s)</td>
<td>18.29, 25.74, 65.93 (1')</td>
</tr>
<tr>
<td>CH$_3$-O</td>
<td>1.79 (d, 1.0)</td>
<td>1.35 (br s)</td>
<td>18.29, 25.74, 65.93 (1')</td>
</tr>
</tbody>
</table>

* A. Rumberto et al. • A Coumarin and Flavones from Ozothamnus lycopodioides

*: Δ = $\delta_{\text{CDCl}_3} - $ $\delta_{\text{C}_6\text{D}_6}$.

Table I. 1H and 13C NMR assignments and 1H–13C long-range correlations of 5 by HMBC, and 1H and 13C NMR spectral data of 6.
glets at δ 1.75 and 1.79 (3H each) indicated the presence of a 3,3′-dimethylallylloxy side-chain, which was confirmed by the 13C NMR spectrum. The methoxyl singlet at δ 3.88 and the presence of a singlet at δ 6.42 in the 1H NMR spectrum showed that compound 5 is a coumarin with three oxygenated substituents in the aromatic region.

The assignment of the hydroxy, methoxy and dimethylallylloxy moieties was carried out using the bidimensional experiments: HMBC and NOESY spectra. The HMBC spectrum showed the following connectivities: a) the protons of the methoxyl group at δ 3.88 showed 3J to δ 131.81; b) the protons of the methylene group of the prenylated moiety at δ 4.60 showed 3J coupling to carbon of the aromatic ring at δ 154.84 and to carbon of the olefinic group at δ 139.02; c) H-4 at δ 7.96 showing 3J couplings to carbons of the aromatic nucleus resonating at δ 145.69 and δ 151.57, and to carbon at δ 161.59 (CO). This allows the assignment of the C-5 hydroxy substituent and confirms that the chemical shift of C-5 may be either δ 145.69 or δ 151.57. Additionally, the HMBC spectrum showed 3J couplings between the proton H-3 at δ 6.19 and the carbon of the aromatic ring at δ 102.41; also the aromatic proton at δ 6.41 showed 3J coupling to carbon at δ 102.41, indicating that the proton of the aromatic nucleus is at the position C-6 or C-8.

The assignment of the positions of the oxyprenyl and methoxy groups was again based on NOESY experiment, this spectrum showing bidirectional connectivities between the aromatic proton at δ 6.41 and the protons of the methylene oxyprenylated at δ 4.60. It showed no correlation with the protons of the methoxyl group.

The study of HMBC and NOESY spectra allowed the assignment of two plausible structures for compound 5: a) 7-(3,3′-dimethylallylloxy)-5-hydroxy-8-methoxy-coumarin or b) 7-(3,3′-dimethylallylloxy)-5-hydroxy-6-methoxy-coumarin. The final structural decision was made by means of a solvent shift method with CDCl3 and benzene-d6 as the solvents, and the 2D 1H-1H COSY experiment.

Solvent induced shifts in benzene-d6 relative to CDCl3 (Δ = δCDCl3 - δC6D6) have been measured and used to determine the position of methoxyl groups in coumarins (González et al., 1973; Grigg et al., 1966). Methoxyl groups located at C-8 show only minor changes (Δδ = 0.1 -0.2 ppm) and are readily distinguished from other isomers (Dean et al., 1978). In compound 5 this effect is large for the methoxyl group (Δδ = 0.60 ppm), similar to the effect of a methoxyl group in C-6 of capensin (García et al., 1988); hence the methoxy group has to be assigned to position C-6 of the coumarin 5. Additionally, the 2D 1H-1H COSY spectrum
showed an interaction between H-4 (δ 7.96) and the aromatic proton at δ 6.42, this being assigned to H-8, since the literature reports a W-like coupling between H-4 and H-8 in coumarins (Murray et al., 1982; Rashid et al., 1992; Vilegas et al., 1995).

All these data are compatible with the structure of 7-(3,3’-dimethylallyloxy)-5-hydroxy-6-methoxycoumarin 5. The 1H NMR and 13C NMR spectral data of compound 5 agree with those previously described for compound 6 (Vilegas et al., 1995), except for the signals corresponding to the prenyl group (Table I).

Linderoflavone B (1), first reported from Lindera lucida (Lee et al., 1965), was later found in Ageratum (Wollenweber et al., 1994) and in Eupatorium (Ngo Le-Van et al., 1979). Eupalestin (2), first known from Eupatorium coelestinum (Ngo Le-Van et al., 1979), was also found in Asteraceae species (Wollenweber et al., 1994). Nobiletin (3) is a well-known constituent of Citrus fruit peel (Tseng, 1938), but also known to occur e.g. in the

Asteraceae Ageratum conyzoides (González et al., 1991), Eupatorium leucolepis (Herz et al., 1982) and Viguiera rosei (Wollenweber et al., 1995). 5’-methoxyxanthogetin (4) was earlier reported from the Asteraceae Ageratum conyzoides (González et al., 1991), Ageratum tomentosum (Vázquez et al., 1988), Conoclinium greggii (Martínez-Vázquez et al., 1993) and Eupatorium coelestinum (Ngo Le-Van et al., 1979). To our knowledge this is the first time that methylenedioxyflavones are definitively reported as constituents of lipophilic exudates. We assume, however, that earlier authors did not care for the localization of these compounds, that they may also be accumulated externally on the plant species cited above (with the exception of Citrus peel, where they are localized in oil cavities).

Acknowledgements

The authors wish to thank Dr Chris Puttock (Canberra) for the plant material, and Mrs Marion Dör (Darmstadt) for technical assistance.