Polyphenols in Stachys and Betonica Species (Lamiaceae)

Vassya Bankovaa,*, Jordanka Koeva-Todorovskab, Tatiana Stambolijskab, Maria-Desislava Ignatova-Grocevab, Daniela Todoroa and Simeon Popova

a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria. Fax: 00359-2700–225. E-mail: iochnp@bgcict.acad.bg
b Faculty of Biology, Sofia University, Sofia 1000, Bulgaria

* Author for correspondence and reprint requests

Z. Naturforsch. 54c, 876–880 (1999); received March 15/June 6, 1999

Lamiaceae. Stachys, Betonica, Phenylethanoids, Flavonoids, Chemotaxonomy

Above-ground parts and roots from four Stachys species (S. germanica L., S. sylvestris L. and the Balkan endemics S. thracica Dav. and S. plumosa Griseb.) as well as of three Betonica species (B. officinalis L. and the Balkan endemics B. bulgarica Deg. et Neic. and B. scarica Griseb.) were screened for phenols (phenylethanoid glycosides, flavonoid glycosides and the phenolic diterpene betolide). Three phenylethanoid glycosides, a flavonoid glycoside and the phenolic diterpene betolide were isolated and identified, most of them for the first time in the investigated species. The results obtained support the view that Stachys and Betonica are well separated genera.

Introduction

Betonica and Stachys species are widely used in folk medicine and recently in the official medicine (Ovcharov et al., 1992). Most of the biologically active substances in these plants are polyphenols, compounds often used in taxonomic studies. Betonica and Stachys are represented in Bulgaria with 4 and 18 species, respectively (Koeva-Todorovska, 1979). The separation of the Linnei’s genus Betonica from Stachys is based on well defined differences in the general morphological characteristics and especially in the morphology of caryotypes and pollen of both genera (Koeva-Todorovska, 1979; 1988).

It was of interest to investigate the polyphenol composition of some Stachys and Betonica species distributed in Bulgaria, especially the endemic ones, and to use the phytochemical evidence to clarify this classification problem.

Materials and Methods

Plant material

Above-ground parts and roots from S. germanica (near the city of Sofia, Knyazhevo, 5.08.1992; (99066), S. sylvestris (near the city of Sofia, Knyazhevo, 4.08.1992; (99065), S. plumosa (Znepole region, village Gorno Uyno, 12.08.1993; (99061); Osogovo Mt., village Bogoslov, 1.08.1994; (99066), S. thracica (Strandja Mt., village Bogoslov, 23.05.1994), B. bulgarica (Middle Balkan Mt., Korudere, 20.07.1998 and 25.07.1994; (85963), B. scarica (Rudina Mt., Borovski dol, 11.08.1993; (99060), B. officinalis (near the city of Sofia, Knyazhevo, 2.08.1992; (99064). The numbers in brackets correspond to the voucher specimens of the plants, determined by Dr. J. Koeva-Todorovska and deposited in the herbarium of the Faculty of Biology, Sofia University (SO).

Isolation

Dried ground roots from S. germanica (620 g) were extracted twice with 3 l ethanol. The ethanol extract was concentrated \textit{in vacuo}, diluted with water and extracted successively with petrol ether (3x) and ethyl acetate (3x). The ethyl acetate extract was subjected to column chromatography on silica gel with mobile phase dichloroethane – methanol with increasing percentage of methanol. After repeated column chromatography on silica gel with mobile phases dichloroethane-methanol and dichloroethane-methanol-water, 1 (20 mg), 2 (14 mg) and 4 (17 mg) were isolated. From the aerial parts (800 g) by the same way 1, 2 and 4 were isolated.

Dried ground roots from B. bulgarica (45 g) were extracted twice with 0.25 l ethanol. The ethanol extract was concentrated \textit{in vacuo}, diluted with...
water and extracted successively with petrol ether (3x) and ethyl acetate (3x). From the petrol ether extract, using silica gel column chromatography with mobile phase hexane-ethyl acetate with increasing polarity, 36 mg of 5 were isolated. The same way as described above from the ethyl acetate extract, 1 (110 mg), 2 (38 mg) and 3 (77 mg) were isolated.

The extraction procedure was applied for S. sylvatica (82 g aerial parts, 25 g roots), S. plumosa (20 g aerial parts, 15 g roots), S. thracica (60 g aerial parts, 10 g roots), B. bulgarica (165 g aerial parts, 45 g roots), B. scardica (75 g aerial parts, 25 g roots) and the following substances were isolated: from S. sylvatica: aerial parts - 1, 2 and 4, roots - 1 and 2; from S. plumosa: aerial parts - 1, 2 and 4, roots - 1, 2 and 4; S. thracica: aerial parts - 1, 2 and 4, roots - 1, 2 and 4; B. bulgarica: aerial parts - 1, 2 and 3, roots - 1, 2, 3 and 5; B. scardica: aerial parts - 1, 2 and 3, roots - 1, 2, 3 and 5.

Identification

The identification of the isolated compounds was carried out by measuring their UV, 1H and 13C NMR spectra and comparing the results with published data, as follows. For compound 1: UV, 1H and 13C NMR spectra identical with data published by Ikeda et al., 1994 for acteoside; for compound 2: UV, 1H and 13C NMR spectra identical with data published by Ikeda et al., (1994) for martinoside; for compound 3: UV, 1H and 13C NMR spectra identical with data published by Miyase et al. (1990) for forsythoside B; for compound 4: UV (incl. those with shift reagents), 1H and 13C NMR spectra identical with data published by El-Ansari et al. (1991) for 4’-O-methylisoscutellarein 7-O- (2”’-O-6”’-O-acetyl-β-D-allopyranosyl-β-D-glucopyranoside); for compound 5: UV, 1H,13C NMR and mass spectra identical with data published by Tkachev et al. (1987) for betolide.

The Rf values on silica gel plates for the isolated compounds are as follows:

In mobile phase chloroform-methanol-water 80:20:1 v/v, 1 - 0.15; 2 - 0.25; 3 - 0.07; 4 - 0.32. Chloroform-methanol-water 30:20:4 v/v, 1 - 0.73; 2 - 0.80; 3 - 0.65; 4 - 0.90. chloroform-acetic acid-methanol 18:1:3 v/v, 1 - 0.60; 2 - 0.68; 3 - 0.51; 4 - 0.75. Compound 5 in mobile phase petrol-ethyl acetate 4:1 Rf = 0.60, and chloroform-acetone 8:1 Rf = 0.75.

Analysis of phenolics

Sample preparation

Of each extract (petrol ether and ethyl acetate) a part corresponding to 1 g plant material was weighted and dissolved in 1 ml of chloroform for the petrol ether extracts and in 2 ml of methanol/chloroform 1:1 v/v for the ethyl acetate extracts.

Preparation of the standard solutions

The standard solutions of the isolated pure compounds (purity >95%, 1H-NMR) 1, 2, 3, 4 and 5 were prepared by dissolving 2 mg of pure compound in 2 ml of solvent. The solvent was methanol/chloroform 1:1 v/v for 1, 2, 3 and 4, and chloroform for 5.

TLC semiquantitative analysis of petrol ether extracts

An aliquot (30 μl) of the sample solutions together with 12 μl of the standard solution of 5 were applied to silica gel plates, developed with petrol ether-ethyl acetate 4:1 and chloroform-acetone 8:1. The evaluation of the spots was made after viewing the plates in UV light (254 nm) and after charring.

TLC semiquantitative analysis of ethyl acetate extracts

An aliquot (20 μl) of the sample solutions together with 12 μl of the standard solutions of 1, 2, 3 and 4 were applied to silica gel plates and developed with three mobile phases: chloroform-methanol-water 80:20:1, 30:20:4 v/v and chloroform-acetic acid-methanol 18:1:3 v/v. The evaluation of the spots was made after viewing the plates in UV light (254 and 366 nm) and after charring with sulfuric acid.

Results and Discussion

Seven species were investigated: Betonica officinalis L., the Bulgarian endemic B. bulgarica Deg. et Neic., the Balkan endemic B. scardica Griesb., Stachys germanica L., S. thracica Dav. (Balkan en-
were subjected to column chromatography on silica gel to afford pure phenylethanoid glycosides, identified by comparing their 1H and 13C NMR: acteoside 1 (Ikeda et al., 1994), martinoside 2 (Ikeda et al., 1994) and forsythoside B 3 (Miyase et al., 1990) (from Stachys and Betonica species. see Table I.) and the flavonoid glycoside 4 (El-Ansari et al., 1991) (from Stachys species only). The petroleum ether extract was separated on silica gel.
Table I. Chemical composition of Betonica and Stachys species.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. officinalis</td>
<td>+++</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+++</td>
</tr>
<tr>
<td>B. officinalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B. bulgarica 1993</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>–</td>
<td>+++</td>
</tr>
<tr>
<td>B. bulgarica 1994</td>
<td>xxx</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B. scardica</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>–</td>
<td>++</td>
</tr>
<tr>
<td>S. germanica</td>
<td>+++</td>
<td>++</td>
<td>–</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>S. germanica</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S. sylvatica</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>S. plumosa 1993</td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>S. plumosa 1994</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>S. thracica</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>S. thracica</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td>x</td>
<td>xx</td>
</tr>
</tbody>
</table>

+ = roots.
– = above-ground parts.

Acteoside 1, martinoside 2 and forsythoside B 3 were found for the first time in B. scardica and B. bulgarica. Martinoside appeared in relatively low concentrations and was not detected in B. officinalis roots. Betolide 5, identified earlier only in B. officinalis roots (Tkachev et al., 1987) was found in relatively high concentrations in all Betonica root samples, the highest in B. bulgarica.

In the above ground parts of the Betonica samples no betolide (which corresponds to earlier investigations, Tkachev et al., 1987), and lower concentrations of forsythoside B were found. The flavonoid glycosides were in low concentrations and we did not succeed to identify any of them.

The polyphenol composition of Stachys differed from that of the investigated Betonica species. No betolide 5 in Stachys samples was found, with the exception of traces in the roots of S. plumosa. Besides acteoside 1 and martinoside 2, the flavonoid glycoside 4 was identified (found earlier in Stachys species, El-Ansari et al., 1991). Only traces of forsythoside B 3 were present. Like in Betonica species, almost no changes in the polyphenol composition in two consecutive years were observed. There were only some qualitative differences in the polyphenol composition between the roots and above-ground parts. In the roots of S. plumosa and S. germanica higher concentrations of 4 were found. Traces of forsythoside B in most of the Stachys samples and relatively high concentrations of martinoside 2 and especially acteoside 1 were shown. Their concentrations in the roots and the above-ground parts showed no significant differences.

The significant amount of betolide 5 in the roots of Betonica, accompanied with high concentrations of forsythoside B 3 and at the same time the absence of the characteristic for Stachys flavonoid glycoside 4, could be used as taxonomic features for Betonica. Contrary to Betonica, in Stachys no betolide 5, and only traces of forsythoside B 3 were found, but the flavonoid 4 was present.

Evidently the established chemical composition in the studied samples Stachys and Betonica differed considerably, which is an indication that they belong to two well separated genera. This is in agreement with the hypothesis that Betonica could be separated from Stacys as a different genus (Koeva-Todorovska, 1988; Calis et al., 1992).
Acknowledgements

The authors are grateful for the partial financial support by the National Foundation for Scientific Research of Bulgaria (Contract X-513).

