The Comparative Molecular Study between Bombycidae and Saturniidae Based on mtDNA RFLP and Cytochrome Oxidase I Gene Sequences: Implication for Molecular Evolution

Jae-Sam Hwang, Jin-Sung Lee, Tae-Won Go, Hyun-Ah Kang, Hae-Ryong Sohn, Ho-Rak Kim and O-Yu Kwon

a National Sericulture and Entomology Research, R. D. A., Suwon 441–100, Korea
b Genome Center, Korea Research Institute of Bioscience and Biotechnology, KIST, P. O. Box 115 Yusong, Taejon 305–600, Korea
c College of Agriculture, Kyungpook National University, Taegu 702–701, Korea
d Department of Anatomy, College of Medicine, Chungnam National University, Taejon 301–131, Korea. Fax: 82–42–580–8206, E-mail: oykwon@hanbat.chungnam.ac.kr

* Author for correspondence and reprint requests

Z. Naturforsch. 54c, 587–594 (1999); received December 30, 1998/April 8, 1999

Bombycidae, Saturniidae, mtDNA RFLP, Cytochrome Oxidase I Gene

The phylogenetic relationships between Bombyx mori and Bombyx mandarina species of Bombycidae, and Antheraea yamamai and Antheraea pernyi species of Saturniidae were investigated based on mtDNA RFLP and cytochrome oxidase I gene. The sizes of the mtDNA of all the species were estimated at approximately 16 kbp ± 500 bp by total length of all the restricted fragments and no variation in size was recognized. Of the fourteen different restriction endonucleases used, BamHI, HindIII, PstI, EcoRI and XbaI showed RFLP. Among these, only HindIII showed RFLP between B. mori and B. mandarina. A comparative analysis of sequences was also conducted with the mitochondrial cytochrome oxidase I genes of each species. The results indicated that B. mori shared a 97%, 85% and 87% sequence identity with B. mandarina, A. yamamai and A. pernyi, respectively. B. mandarina shared 92% sequence identity with A. pernyi. The results of the phylogenetic analysis exhibited monophyly and confidence limits of more than 99% in all trees for both Bombycidae and Saturniidae.

Introduction

The analysis of mitochondrial DNA (mtDNA) sequence is a powerful tool for understanding insect population genetics and phylogenetics, since the small size of the mtDNA, the relatively rapid rate of its evolutionary change, and maternal inheritance all make it suitable for examining population background and evolution among closely related taxa (Mortitz et al., 1987; Gray, 1989; Lansman et al., 1981). Recently, RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA), mtDNA sequence and the sequence variation of target genes can be obtained in the molecular phylogenetics of insects.

Among insects, complete mtDNA sequences only exist for four insects: Drosophila yakuba (Clary and Wolstenholme, 1985), Apis mellifera (Crozier and Crozier, 1993), Anopheles quadrirmaculatus (Mitchell et al., 1993), Anopheles gambiae (Beard et al., 1993). It is generally recognized that insect mtDNA consists of two ribosomal RNA genes, twenty-two transfer RNA genes and thirteen protein coding genes of the mitochondrial inner membrane respiratory complexes (Clary and Wolstenholme, 1985; Crozier and Crozier, 1993; Beard et al., 1993). Further studies on mtDNA variation have also enhanced our understanding of population and evolutionary biology at both the intraspecific and interspecific levels. The PCR revolution and discovery of universal primers for mtDNA that work in a number of different species (Simon et al., 1994; Lunt et al., 1996; Kambhampati and Smith, 1995; Roehrdanz, 1995) have greatly increased the speed at which data can be obtained.

Silkmoths are holometabolous insects belonging to either the family Bombycidae or Saturniidae, both of which belong to the superfamily Bombycoidea. Bombycidae, Bomix mori and Bombix mandarina, live on mulberry leaves and make...
higher quality silk fiber than Saturniidae, *Antheraea yamamai* and *Antheraea perynin*, which live on leaves of oak tree. *B. mori* and *B. mandarina* can be crossed, and the resulting hybrid progeny shows normal fertility (Kawaguchi, 1928; Aratake et al., 1973). The chromosome numbers are quite different between *A. yamamai* (31) and *A. perynin* (49), but they can be closed to produce F1 progeny (Kawaguchi, 1934; Shimada et al., 1988) which, however, are sterile due to incomplete oogenesis and other abnormalities (Shimada and Kohayashi, 1992; Kirimura, 1962). It is prerequisite to clarify the phylogentic relationships between Bombycidae or Saturniidae, with respect to understand physiological differences under molecular level and to create genetically transformed silkworms which may produce high quality amount of silk fiber using molecular breeding techniques. With in this mind, here, we have investigated the construction of mtDNA RFLP and sequenced the mitochondrial cytochrome oxidase I gene in *B. mori*, *B. mandarina*, *A. yamamai* and *A. perynin* to understand the phylogenetic relationship between these species of Bombycidae and Saturniidae.

Materials and Methods

The preparation of mtDNA from silkgland was purified as described by Tamura and Aotsuka (1988). One gram of silkgland was homogenized in a 10 ml chilled homogenizing buffer [0.25 M sucrose, 10 mM EDTA, 30 mM Tris-HCl, (pH 7.5)], and centrifuged at 1,000xg for 1 min at 4 °C. The supernatant was recentrifuged at 12,000xg for 10 min at 4 °C. The resulting pellet of mitochondria was suspended in a 50 μl of 10 mM Tris-EDTA buffer (pH 8.0) containing 0.15 M NaCl, 0.18 N NaOH and 1% SDS. After phenol-chloroform (1:1) and ethanol extraction, the mtDNA was collected at 12,000xg for 15 min at 4 °C. The resulting mtDNA was rinsed twice with 70% cold ethanol and digested with 20 μg/ml of DNase-free RNase in a 20 μl of 10 mM Tris-EDTA buffer (pH 8.0) at 37 °C for 30 min. The mtDNAs were digested with 14 kind of restriction enzymes at 37 °C for 2 h: *BamHI*, *HindIII*, *XhoI*, *SalI*, *SmaI*, *PstI*, *EcoRI*, *XbaI*, *EcoRV*, *DraI*, *KpnI*, *ScaI*, *BglI*, *BglII*. Digested DNA fragments were separated on the 1% agarose gels in TBE buffer, and the bands of the expected size were stained with ethidium bromide solution and were photographed using Polaroid type 667 films on a UV transilluminator.

A PCR was set up in a 50 μl volume as described by Kambhampati et al. (1992) in a GeneAmp PCR system 9700 (Perkin-Elmer cetus Co). Ten ng of each mtDNA, *B. mori*, *B. mandarina*, *A. yamamai* and *A. perynin*, was used as a PCR template DNA. The primers for cytochrome oxidase I gene (Cy1–1,632; 5′-TGATCAAATTTATAA-3′ and Cy2–2,191; 5′-GGTAAAATTTAAATAAACTTC-3′) were derived from the already known mtDNA sequences of *D. yakuba* (Clary and Wolstenholme, 1985), *A. mellifera* (Crozier and Crozier, 1993), and *A. quadrirnacutatus* (Mitchell et al., 1993) and used 5 pmoI in this experiments. The temperature profile for the amplification was 95 °C for 30 sec, 50 °C for 1 min, then 72 °C for 1 min for 35 cycles, and a final extension step of 72 °C for 5 min was added. The PCR products were separated on a 1% agarose gel, and the bands of the expected size were recovered using a Gene clean II Kit (Bio 101, USA). The eluted DNA fragments were directly ligated with a pGemT Easy vector (Promega, USA) and transformed into *E. coli* JM 109. The recombinant plasmids were isolated according to procedures prescribed by the Wizard SV plasmid purification Kit (Promega, USA).

Fluorescent cycle sequencing was performed with 300–500 ng of this double stranded DNA in a 20 μl sequencing reaction mixture and prepared using an ABI PRISM Dye terminator Cycle Sequencing Ready Reaction Kit. Three clones, both orientations, were examined for each sequence.

The genetic similarity coefficient was calculated from

\[F = \frac{2n_x y (n_x + n_y)}{n_x + n_y} \]

in which \(n_x \) and \(n_y \) are the number of fragments in species X and Y, respectively, where \(n_{xy} \) is the number of fragments shared by the two species (Nei and Li, 1979). Computer analyses of mtDNA sequences were carried out using the CLUSTAL W program (Thompson et al., 1994). Phylogenetic trees for the data set were inferred by using the neighbor-joining program of MEGA (Saitou and Nei, 1987; Kumar et al., 1993). The stability of the relationships was assessed by performing bootstrap analyses of the neighbor-joining data based on 1,000 resampling.
Results and Discussion

Silkworms, in addition to being important targets for improvement by genetic engineering, provide chances to research unique biological aspects, including developmental pattern formation and tissue specific expression. To investigate these phenomena and to genetically engineer silkworms showing better characteristics, comparison of silkworms both dominant, Bombycidae (Bombix mori and Bombix mandarina) and wild type, Saturniidae (Antheraea yamamai and Antheraea pernyi) at a molecular level is prerequisited, since little information is still available on the base of molecular level.

As described above, it is important to establish the phylogenetic relationships between Bombycidae or Saturniidae on the molecular level to understand a silkworm physiology and to create a transgenic silkworm may produce a lot of useable biomatters including silk and drugs. With in this mind, here, we have established the molecular relationship of Bombycidae or Saturniidae based on those mtDNA RFLP data and mitochondrial cytochrome oxidase I gene sequences partially amplified by PCR.

Phylogenetic relationships among the Bombus mori and Bombus mandarina species of Bombycidae and A. yamamai and the A. pernyi species of Saturniidae were investigated based on mtDNA RFLP and the cytochrome oxidase I gene. The mtDNA sizes of all the species tested were estimated at approximately 16 kb ± 500 bp in length, in which the non-variation of sizes and restriction enzyme sites were observed as shown in Figs 1A and 1B. The resulting genomic sizes are similar to those previously

Table I. Numbers of restriction sites on the mtDNAs of the major silkworms.

<table>
<thead>
<tr>
<th></th>
<th>BamH1</th>
<th>HindIII</th>
<th>XhoI</th>
<th>SalI</th>
<th>SmaI</th>
<th>PstI</th>
<th>EcoRI</th>
<th>XbaI</th>
<th>EcoRV</th>
<th>DraI</th>
<th>KpnI</th>
<th>SacI</th>
<th>BglII</th>
<th>BglIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. mori(Jam305)</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>B. mori(Jam306)</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>B. mandarina</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>A. yamamai</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>A. pernyi</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

*: No restriction sites. #: Restriction endonuclease showing RFLPs among the five silkworm. Jam305: Japonic type. Jam306: Chinese type.

Table II. Genetic similarity values among silkworms, based on the RFLP markers of mtDNA.

<table>
<thead>
<tr>
<th></th>
<th>B. mori(Jam305)</th>
<th>B. mori(Jam306)</th>
<th>B. mandarina</th>
<th>A. yamamai</th>
<th>A. pernyi</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. mori(Jam305)</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. mori(Jam306)</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. mandarina</td>
<td>0.848</td>
<td>0.848</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. yamamai</td>
<td>0.303</td>
<td>0.302</td>
<td>0.394</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>A. pernyi</td>
<td>0.227</td>
<td>0.228</td>
<td>0.348</td>
<td>0.500</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Jam305: Japonic type; Jam306: Chinese type.
reported for *A. gambiae* (15,363 bp), *A. quadriramous*culatus* (15,455 bp), and *D. yakuba* (16,019 bp), however, they are slightly smaller than that for *D. melanogaster* (19,517 bp). Of the fourteen different restriction endonucleases used, *BamH*, *Hin*d, *PstI*, *EcoRI* and *XbaI* showed RFLP (Table I and Fig. 1B). A variation in the enzyme-digested fragments between *B. mori* strains, Japanese (Jam305) and Chinese (Jam306), was not detected (Table I). A matrix for genetic similarity was constructed based on sixty eight mtDNA RFLP markers obtained from the two families di-
gested with the fourteen restriction endonucleases by using the equation of Nei and Li (1979). The genetic similarity coefficients varied from 0.227 to 1.000 with an average of 0.498. *B. mori* (Jam305) shared a 0.848, 0.303 and 0.227 genetic similarity coefficient with *B. mandarina*, *A. yamamai*, *A. pernyi*, respectively. *B. mandarina* shared a 0.394 and 0.348 genetic similarity coefficient with *A. yamamai* and *A. pernyi*, respectively, and the genetic similarity coefficient between *A. yamamai* and *A. pernyi* was 0.500 (Table II). As a result, the genetic similarity coefficient between *B. mori* and *B. mandarina* from the four silkworms was determined at 0.848 which indicates a highly homogeneous genetic background.
The nucleotide sequence homology of a mitochondrial cytochrome oxidase I gene from the four silkmoths was investigated using PCR. The resulting PCR products of the cytochrome oxidase I gene were about 600 bp corresponding to the position of 1,617–2,213 in the cytochrome oxidase I gene of the *D. yakuba* (Clary and Wolstenholme, 1985). The sequences of the four amplified fragments were aligned using the CLUSTAL W program as shown in Fig. 2. As a result, *B. mori* shared a 97%, 85% and 87% identity with *B. mandarina*, *A. yamamai* and *A. pernyi*, respectively. *B. mandarina* shared a 87% and 88% identity with both *A. yamamai* and *A. pernyi*, and *A. yamamai* shared a 92% identity with *A. pernyi*. These sequences were compared with four insect species previously reported on (Table III). These sequences were also used for a phylogenetic analysis. All the trees showed monophyly for both Bombycidae and Saturniidae (Fig. 3). The confidence limits for the monophyly of these trees were estimated using bootstrapping tests. The confidence limits for both Bombycidae and Saturniidae were more than 99% for all trees.

Until now, many studies have examined the relationships between Bombycidae and Saturniidae. *B. mori* and *B. mandarina* can be crossed, and the resulting hybrid progeny shows normal fertility (Kawaguchi, 1928; Aratake et al., 1973). Studies of the fibroin gene (Kusuda et al., 1986), ribosome gene (Makawa et al., 1988), the immunological properties of arylphorin (Shimada et al., 1992) and the arylphorin gene (Shimada et al., 1995), all suggest close genetic relationships between *B. mori* and *B. mandarina*. Although their chromosome numbers are quite different (*yamamai=31, pernyi=..."

Table III. Levels of similarity based on cytochrome oxidase I gene sequences in silkmoths and other insects.

<table>
<thead>
<tr>
<th>Organisms</th>
<th>% Cytochrome oxidase I gene sequence similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bombyx mori</td>
<td>100</td>
</tr>
<tr>
<td>Bombyx mandarina</td>
<td>97</td>
</tr>
<tr>
<td>Antheraea yamamai</td>
<td>85</td>
</tr>
<tr>
<td>Antheraea pernyi</td>
<td>87</td>
</tr>
<tr>
<td>Drosophila yakuba</td>
<td>80</td>
</tr>
<tr>
<td>Anopheles gambiae</td>
<td>82</td>
</tr>
<tr>
<td>Apis mellifera</td>
<td>76</td>
</tr>
</tbody>
</table>

Fig. 3. Dendrogram of the phylogenetic relationships in silkmoths and other insects based on mtDNA cytochrome oxidase I sequence data.
A. yamamai and A. pernyi can be closed to produce F1 progeny (Kawaguchi, 1934; Shimada et al., 1988). The progeny, however, are sterile due to incomplete oogenesis and other abnormalities (Shimada and Kobayashi, 1992). Kirimura (1962) showed that the fibroin of A. yamamai and A. pernyi are clearly similar. It is generally known that a mitochondria genome in a higher eukaryote is higher than a somatic genome on the evolutionary change-speed. In addition, Kimura (1968) reported in his paper on ‘Evolutionary rate at the molecular level’ that evolution on the molecular level does not depend on Darwinian selection but rather on the result of a spontaneous change of genetic matters in the unimportant genetic region. In other words, natural selection on the molecular level also chooses optimal best adaptability in response to ever changing environments in the evolutionary process. Therefore, genetic variation requires a minimum of change in the less important regions of genes. Here, we investigated the phylogenetic relationships between the B. mori and B. mandarina species of the Bombycidae and the A. yamamai and A. pernyi species of the Saturniidae based on mtDNA RFLP and the cytochrome oxidase I gene. From the results of the mtDNA RFLP and the cytochrome oxidase I sequence homology, we can assume a closer genetic relationship between the B. mori and B. mandarina species than between A. yamamai and A. pernyi. Although this report is not exhaustive to prove that wild silkworm, B. mandarina is a possible ancestor of the domesticated B. mori, it does provide data to understand the mtDNA relationship of B. mori and B. mandarina. In addition, this study indicates that the mtDNA gene can serve as a good basis for the phylogenetic analysis of silkmoths. At least mtDNA RFLP and cytochrome oxidase I gene sequences can provide evidence on the phylogenetic relationships among genus and families.

