Di- and Triterpenoids from the Liverwort Blepharidophyllum densifolium

Michael Flegel and Hans Becker*

F R 12.3, Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany. Fax: +49-681-302-2476. E-mail: pb13hb@rz.uni-sb.de

* Author for correspondence and reprint requests

Z. Naturforsch. 54c, 481–487 (1999); received March 26/April 27, 1999

Blepharidophyllum, Jungermanniales, Scapaniaceae, ent-kauranes, ent-pimaranes, Dammaranes

Introduction

Liverworts are known to be a rich source of terpenoidic constituents (Asakawa, 1995; Zinsmeister et al., 1991; Zinsmeister et al., 1994). Since there has been no previous investigation on the South American liverwort Blepharidophyllum densifolium, we decided to analyse the constituents of this species, in order to find new natural products. This paper describes the isolation and characterisation of ten new ent-kauranes (1–10) along with eleven known compounds of this type of structure (11–21), an ent-pimarane type diterpenoid (22) and three known dammarane triterpenoids (23–25).

Result and Discussion

A combination of size exclusion chromatography, vacuum liquid chromatography and HPLC of the ether and the methanolic extract of the plant led to the isolation of the constituents discussed below.

Compound 1, C22H32O3 (m/z 344.2, [M]+), was obtained as crystalline needles. The IR spectrum indicated the presence of an α,β-unsaturated carbonyl in a five membered ring (1727 cm⁻¹, 1645 cm⁻¹). The 1H NMR spectrum showed signals for two tertiary methyl groups (δH 0.95, 1.08), a deshielded proton at δH 3.03 (brs, H-13), two exomethylene protons (δH 5.92, brs; 5.23, brs), two protons of an oxygen carrying methylene group (δH 4.19, d, J = 11.0 Hz; 3.86, d, J = 11.0 Hz) and an acetoxy group (s, δH 2.03). The 13C NMR spectrum indicated the presence of 22 carbons (Table I), three methyls, eight methylenes, three methines, three quarternary carbons, two carboxyl carbons (δc 210.2, s; 171.2, s), one oxygenated methylene (δc 67.1, t) and two olefinic carbons (δc 149.6, s; 114.3, t). The above spectral data show that compound 1 is tetracarboxyclic and consistent with an acetylated kaur-16-en-15-one structure. Since only three methyls are visible in the 1H NMR spectrum an acetylation in position 18,19 or 20 can be assumed. The location of the acetyl was determined by twodimensional NMR. A correlation between the protons of the methyl at C-20 and the oxygenated methylene indicates that the structure of 1 is ent-19-acetoxy-kaur-16-en-15-one. The assumption of an ent-kaurane can be deduced from the co-occurrence of the known ent-kauranes and from the sign of the specific rotation of 1 ([α]D¹⁰ = −76 °) since ent-kauranes in general have negative rotations.

Compound 2 with the molecular formula C23H32O2 was obtained as crystalline needles. The IR and 1H NMR spectra indicated a close relation to 1. The NMR showed an additional signal of an
aldehyde proton (δ_H 9.73, s) instead of the singlet of the methyl from an acetylic group. From this observation the location of an aldehyde in position 19 can be assumed, which corresponds with the detected mass of m/z 300, [M]+. Therefore, the structure of 2 is represented as ent-19-oxo-kaur-16-en-15-one.

Compound 3 gave the molecular formula C_{20}H_{30}O_{4}. Comparison of its ^1H and ^13C NMR spectra with those of 2 displayed an additional singlet of an acetyl methyl at δ_H 1.80 corresponding to the ^13C NMR signal at δ_C 21.2. A secondary carbinole proton at δ_H 5.24 (t, J = 3.2 Hz) is visible in the spectrum. The low field shift of this signal indicates the acetylation of this alcohol. The location and stereochemistry of the acetoxy group was determined by NOE experiments. Those revealed NOEs between H-11 and both H-1α and H-12α. Thus, these results establish the acetoxy group as 11α. NOE experiments also showed that the aldehyde at δ_H 10.34 must be attached to C-20. The above data indicate, that the structure of 3 is ent-11α-acetoxy-20-oxo-kaur-16-en-15-one.

Compound 4 has the molecular formula C_{22}H_{30}O_{5} (m/z 374, [M]+). Its ^13C NMR data are similar to those of 3 except for the presence of a carboxylic acid (δ_C 181.4) instead of a C-20 aldehyde. This was proven by HMBC correlation between both H-5 and H-9 and C-20. On the basis of these results structure 4, ent-11α-acetoxy-15-oxo-kaur-16-en-20-acid, is assigned to this compound.

Compound 5 did not give a molecular ion on GC-mass spectrometry analysis. However, ^13C NMR and DEPT spectra revealed its molecular formula C_{22}H_{32}O_{4}. Comparison of the ^1H and ^13C NMR data with those of the compounds described above indicated that the structure is another acetylated ent-kaur-16-en-15-one with an additional hydroxyl group which is represented by a doublet of doublet (δ_H 4.08, J = 12.0, 4.6 Hz). The location and stereochemistry of the hydroxyl group was determined by NOE experiments revealing correlation between H-7 and both H-5β and H-9β. These results establish the hydroxyl group as 7α. Therefore, the structure of 5 is represented as ent-11α-acetoxy-7β-hydroxy-kaur-16-en-15-one.

Compound 6 gave the molecular formula C_{22}H_{32}O_{4} (m/z 360, [M]+). Its ^1H NMR data are similar to those of 5 except for the occurrence of two doublets (δ_H 3.67, J = 11.7 Hz; 3.43, J = 11.7 Hz) instead of the H-7 doublet of doublet. This indicates the presence of an oxygenated methylene in position 18, 19 or 20. A NOE correlation between the methylene protons and the protons of the methyl at C-20 indicates that the structure of 6 is ent-11α-acetoxy-19-hydroxy-kaur-16-en-15-one.

The CI-mass spectrometry of compound 7 displayed the same molecular ion (m/z 360, [M]+) as that of 6. The NMR data of both compounds are also very similar. In the ^1H NMR of 7 the doublets of the protons at C-19 are shifted to lower fields whereas the signal of H-11 shows a high field shift of 1.06 ppm. The above results reveal that 7 contains an acetylated hydroxyl group at C-19 and an unsubstituted alcohol at C-11. On the basis of these findings structure 7, ent-19-acetoxy-11α-hydroxy-kaur-16-en-15-one, is assigned to this compound.
Table I. 13C NMR spectral data of compound 1–10.

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>39.7</td>
<td>39.6</td>
<td>34.3</td>
<td>38.7</td>
<td>39.1</td>
<td>39.6</td>
<td>39.8</td>
<td>42.1</td>
<td>39.2</td>
<td>39.1</td>
</tr>
<tr>
<td>C-2</td>
<td>18.0</td>
<td>18.4</td>
<td>19.0</td>
<td>20.2</td>
<td>18.2</td>
<td>17.9</td>
<td>17.9</td>
<td>18.2</td>
<td>18.0</td>
<td>17.8</td>
</tr>
<tr>
<td>C-3</td>
<td>36.4</td>
<td>36.5</td>
<td>41.4</td>
<td>42.7</td>
<td>41.3</td>
<td>35.4</td>
<td>36.1</td>
<td>40.1</td>
<td>35.2</td>
<td>36.1</td>
</tr>
<tr>
<td>C-4</td>
<td>37.1 s</td>
<td>37.9 s</td>
<td>33.8</td>
<td>34.1</td>
<td>33.3 s</td>
<td>38.8 s</td>
<td>37.0</td>
<td>39.1 s</td>
<td>38.2 s</td>
<td>37.1 s</td>
</tr>
<tr>
<td>C-5</td>
<td>55.9 d</td>
<td>56.0 d</td>
<td>54.5 d</td>
<td>55.8 d</td>
<td>52.5 d</td>
<td>55.7 d</td>
<td>55.7 d</td>
<td>56.4 d</td>
<td>55.5 d</td>
<td>55.7 d</td>
</tr>
<tr>
<td>C-6</td>
<td>18.2 t</td>
<td>18.8 t</td>
<td>17.8 t</td>
<td>18.5 t</td>
<td>27.5 t</td>
<td>18.3 t</td>
<td>18.6 t</td>
<td>64.7 d</td>
<td>18.7 t</td>
<td>18.7 t</td>
</tr>
<tr>
<td>C-7</td>
<td>34.0 t</td>
<td>33.7 t</td>
<td>33.0 t</td>
<td>33.3 t</td>
<td>71.1 d</td>
<td>33.9 t</td>
<td>33.9 t</td>
<td>39.8 t</td>
<td>34.8 t</td>
<td>34.7 t</td>
</tr>
<tr>
<td>C-8</td>
<td>52.5 s</td>
<td>51.4 s</td>
<td>50.4 s</td>
<td>50.5 s</td>
<td>56.7 s</td>
<td>50.6 s</td>
<td>50.4 s</td>
<td>48.8 s</td>
<td>50.9 s</td>
<td>50.9 s</td>
</tr>
<tr>
<td>C-9</td>
<td>52.8 d</td>
<td>52.3 d</td>
<td>60.7 d</td>
<td>57.3 d</td>
<td>59.2 d</td>
<td>59.9 d</td>
<td>64.2 d</td>
<td>59.9 d</td>
<td>59.0 d</td>
<td>63.9 d</td>
</tr>
<tr>
<td>C-10</td>
<td>40.0 s</td>
<td>39.9 s</td>
<td>53.4 s</td>
<td>48.0 s</td>
<td>38.8 s</td>
<td>38.8 s</td>
<td>38.6 s</td>
<td>38.7 s</td>
<td>38.3 s</td>
<td>38.2 s</td>
</tr>
<tr>
<td>C-11</td>
<td>18.9 t</td>
<td>20.0 t</td>
<td>67.6 d</td>
<td>67.9 d</td>
<td>68.0 d</td>
<td>68.3 d</td>
<td>66.0 d</td>
<td>66.5 d</td>
<td>67.2 d</td>
<td>65.0 d</td>
</tr>
<tr>
<td>C-12</td>
<td>32.4 t</td>
<td>32.1 t</td>
<td>35.7 t</td>
<td>36.5 t</td>
<td>39.9 t</td>
<td>38.6 t</td>
<td>41.3 t</td>
<td>38.3 t</td>
<td>31.5 t</td>
<td>32.2 t</td>
</tr>
<tr>
<td>C-13</td>
<td>38.2 d</td>
<td>38.1 d</td>
<td>36.8 d</td>
<td>36.4 d</td>
<td>36.3 d</td>
<td>36.7 d</td>
<td>36.8 d</td>
<td>37.1 d</td>
<td>34.3 d</td>
<td>34.7 d</td>
</tr>
<tr>
<td>C-14</td>
<td>36.6 t</td>
<td>37.1 t</td>
<td>38.6 t</td>
<td>35.0 t</td>
<td>27.8 t</td>
<td>36.3 t</td>
<td>36.5 t</td>
<td>37.7 t</td>
<td>36.9 t</td>
<td>37.0 t</td>
</tr>
<tr>
<td>C-15</td>
<td>210.2 s</td>
<td>210.1 s</td>
<td>207.4 s</td>
<td>209.1 s</td>
<td>209.2 s</td>
<td>208.8 s</td>
<td>209.4 s</td>
<td>209.4 s</td>
<td>222.0 s</td>
<td>223.8 s</td>
</tr>
<tr>
<td>C-16</td>
<td>149.6 s</td>
<td>149.5 s</td>
<td>149.8 s</td>
<td>149.9 s</td>
<td>149.9 s</td>
<td>150.0 s</td>
<td>150.1 s</td>
<td>149.6 s</td>
<td>48.9 d</td>
<td>49.4 d</td>
</tr>
<tr>
<td>C-17</td>
<td>114.3 t</td>
<td>114.6 t</td>
<td>113.2 t</td>
<td>113.1 t</td>
<td>113.4 t</td>
<td>113.1 t</td>
<td>113.0 t</td>
<td>113.0 t</td>
<td>10.4 q</td>
<td>11.1 q</td>
</tr>
<tr>
<td>C-18</td>
<td>27.5 q</td>
<td>28.6 q</td>
<td>32.0 q</td>
<td>33.0 q</td>
<td>33.6 q</td>
<td>27.1 q</td>
<td>27.5 q</td>
<td>27.9 q</td>
<td>26.7 q</td>
<td>27.4 q</td>
</tr>
<tr>
<td>C-19</td>
<td>67.1 t</td>
<td>n. d.</td>
<td>20.8 q</td>
<td>22.2 q</td>
<td>21.5 q</td>
<td>65.5 t</td>
<td>66.9 t</td>
<td>68.2 t</td>
<td>65.5 t</td>
<td>66.9 t</td>
</tr>
<tr>
<td>C-20</td>
<td>18.0 q</td>
<td>15.4 q</td>
<td>206.6 d</td>
<td>180.1 s</td>
<td>18.1 q</td>
<td>18.2 q</td>
<td>17.9 q</td>
<td>18.8 g s</td>
<td>18.4 q</td>
<td>17.9 q</td>
</tr>
<tr>
<td>C-21</td>
<td>171.2 s</td>
<td>169.1 s</td>
<td>169.3 s</td>
<td>169.4 s</td>
<td>169.4 s</td>
<td>171.3 s</td>
<td>169.3 s</td>
<td>169.9 s</td>
<td>171.3 s</td>
<td>171.3 s</td>
</tr>
<tr>
<td>C-22</td>
<td>20.9 q</td>
<td>21.2 q</td>
<td>21.4 q</td>
<td>21.5 q</td>
<td>21.4 q</td>
<td>21.0 q</td>
<td>21.3 q</td>
<td>21.2 q</td>
<td>21.5 q</td>
<td>21.5 q</td>
</tr>
</tbody>
</table>

The molecular formula of compound 8 was established as $\text{C}_{22}\text{H}_{32}\text{O}_{5}$ (m/z 376, [M$^+$]). Its 1H NMR data are similar to those of 6 but in the spectrum of 8 an additional broad singlet of another hydroxyl group can be observed at δ_H 4.38. In order to elucidate the location of this oxygenated methine HMBC experiments had been done which indicated correlation between the methine proton and C-10 and C-8. For this reason the alcohol must be located in position 6. Its stereochemistry was determined by NOE. The above results reveal that 8 is enth-11α-acetoxy-6β,19-dihydroxy-kaur-16-en-15-one.

Compound 9 was obtained as colourless needles with a molecular formula of $\text{C}_{22}\text{H}_{32}\text{O}_{4}$ as calculated from the CI mass spectrum (m/z 362, [M$^+$]). On comparison of the 1H NMR data of the compounds described above with the data of 9 it is obvious that the singlets of the olefinic protons are missing. Instead a doublet of a secondary methyl (δ_H 1.14, $J = 7.3$ Hz) is visible in the spectrum corresponding to a 13C NMR signal at δ_C 10.6. This signal can be assigned to a methyl at C-16. Thus, compound 9 is consistent with a kauran-15-one structure. Based on its chemical shift and multiplicity a doublet at δ_H 5.03 ($J = 6.0$ Hz) could be assigned to a proton of an acetylated methine in 11α. The shifts of two doublets at δ_H 3.66 ($J = 11.0$ Hz) and δ_H 3.42 ($J = 11.0$ Hz) are almost identical with the signals of the methylene protons in position 19 of compound 6. The above data indicate that the structure of 9 is enth-11α-acetoxy-19-hydroxy-kauran-15-one.

The last new diterpenoid from B. densifolium, 10, gave the molecular formula $\text{C}_{22}\text{H}_{34}\text{O}_{5}$ (m/z 362, [M$^+$]). The 1H NMR spectra of 10 and 9 are very similar. From the shifts of the doublet of H-11 (δ_H 3.90, $J = 5.8$ Hz) and of the doublets of the protons at C-19 (δ_H 4.14, $J = 11.2$ Hz; δ_H 3.93, $J = 11.2$ Hz) can be deduced that the location of the acetylation of compound 10 has changed from 11 to 19. For these reasons the structure of 10 is enth-19-acetoxy-11α-hydroxy-kauran-15-one.

ent-15-oxo-kauran-19-acid (21) (de Oliveira et al., 1995), ent-3β-hydroxy-pimara-8(14),15-diene (22) (Ansell et al., 1993) together with the triterpenoids cabraleadiol (23) (Hisham et al., 1996), cabraleadiol acetate (24) (Waterman and Ampofo, 1985) and shoreic acid (25) (Govindachari et al., 1994) were also isolated from *B. densifolium* and identified by comparison of their spectroscopic data with published results.

Experimental

Solvents used for spectral measurements

CDCl₃ [¹H NMR: 400 MHz; ¹³C NMR: 100 MHz for 1D, 500 MHz and 125 MHz for 2D techniques, respectively. Chemical shifts are given in δ values (ppm) from TMS], CHCl₃ (optical rotation).

Plant material

Blepharidophyllum densifolium (Hook.) Ångstr. was collected in Tierra del Fuego, south of Paso Garibaldi, Argentina, in March 1997 by Prof. Dr. R. Mues and identified by Dr. U. Drehwald, Göttingen. A voucher specimen is deposited at the Botanical Institute of the Universität des Saarlandes (Herbarium SAAR, No. 5692).

Extraction and isolation

The extraction scheme followed standard procedures of our group (Bungert et al., 1998; Cullmann et al., 1993; Adam and Becker, 1994). Powdered air dried plant material (400 g) was subsequently extracted with Et₂O and MeOH. The Et₂O extract (13.9 g) was chromatographed on Sephadex LH-20 (150 × 2.5 cm i.d.) with MeOH-CH₂Cl₂ (1:1) as eluent to give two fractions (B 1 and B 2). Fraction B 2 (7.5 g) was separated by VLC (Silica gel 15 µm, 60 mm × 35 mm i.d., stepwise with an n-hexane-EtOAc gradient) and gave the fractions B 2–1 (1.5–2% EtOAc, 707 mg), B 2–2 (2–4% EtOAc, 777 mg), B 2–3 (4–12%
M. Flegel and H. Becker • Di- and Triterpenoids from *Blepharidophyllum*

24 Ac EtOAc, 1249 mg), B 2 -4 (12-20% EtOAc, 966 mg), B 2 -5 (20-40% EtOAc, 823 mg) and B 2 -6 (40-80% EtOAc, 845 mg). These fractions were further purified by HPLC (5 µm, 4 x 250) on silica gel, diol-modified silica gel and cyanomodified silica gel to give the following constituents in order of increasing polarity: 11 (Si 60, n-hexane-EtOAc 99.5:0.5) (3.0 mg), 12 (Si 60, n-hexane-EtOAc 99.5:0.5) (10.0 mg), 1 (Si 60, n-hexane-EtOAc 97.5:2.5) (12.4 mg), 14 (Si 60, n-hexane-EtOAc 97.5:2.5) (14.3 mg), 2 (Si 60, n-hexane-EtOAc 97.5:2.5) (1.2 mg), 13 (Si 60, n-hexane-EtOAc 97:3) (5.0 mg), 22 (Si 60, n-hexane-EtOAc 93:7) (1.8 mg), 15 (Si 60, n-hexane-EtOAc 93:7) (19.0 mg), 3 (Si 60, n-hexane-EtOAc 93:7) (21.0 mg), 24 (Si 60, n-hexane-EtOAc 92:8) (5.8 mg), 16 (CN, n-hexane-EtOAc 93:7) (8.4 mg), 17 (Diol, n-hexane-EtOAc 95:5) (4.5 mg), 18 (Si 60, n-hexane-EtOAc 84:16) (11.4 mg), 19 (Si 60, n-hexane-EtOAc 84:16) (6.4 mg), 23 (Si 60, n-hexane-EtOAc 84:16) (3.1 mg), 20 (Si 60, n-hexane-EtOAc 84:16) (5.4 mg), 21 (Si 60, n-hexane-EtOAc 84:16) (3.3 mg), 4 (Diol, n-hexane-EtOAc 90:10) (6.2 mg), 25 (Si 60, n-hexane-EtOAc 82:18) (8.5 mg), 10 (Si 60, n-hexane-EtOAc 75:25) (2.5 mg), 5 (Si 60, n-hexane-EtOAc 70:30) (6.4 mg), 6 (Diol, n-hexane-EtOAc 85:15) (8.6 mg), 9 (Si 60, n-hexane-EtOAc 65:35) (1.8 mg) and 7 (Si 60, n-hexane-EtOAc 60:40) (4.4 mg). The methanol soluble extract was distributed between EtOAc and H₂O. The organic layer was evaporated in vacuo and also chromatographed via Sephadex LH-20 with MeOH-CH₂Cl₂ (4:1) as eluent to give the two fractions BE-1 and BE-2. The VLC (Diol, 15 µm, 60 mm x 35 mm i.d., stepwise with an n-hexane-EtOAc gradient) of BE-2 (6.21 g) afforded fraction BE-2.3 (25-40% EtOAc, 156 mg). A HPLC purification (5 µm, 4 x 250) on CN modified silica gel gave compound 8 (CN, n-hexane-EtOAc 79:21) (25.4 mg).

ent-19-acetoxy-kaur-16-en-15-one (1)

\[\alpha^D_0 = -76° \ (CHCl_3); \text{EI-MS } m/z \ (\text{rel. int.}): 344.2 [M]+ (22), 284(13), 269(12), 173(15), 161(20), 148(39), 136(51), 123(88), 119(45), 107(78), 95(53), 91(100); IR \nu_{\text{max}} \ cm^{-1}: 2980, 1727, 1645; \ ^1H-NMR (CDCl_3) \delta_H 5.92 (1H, brs, H-17A), 5.23 (1H, brs, H-17B), 4.19 (1H, d, J = 11.0 Hz, H-19A), 3.86 (1H, d, J = 11.0 Hz, H-19B), 2.03 (3H, s, H-22), 1.89 (1H, brd, J = 13.0 Hz, H-1α), 1.08 (3H, s, H-20), 0.95 (3H, s, H-18); \ ^13C-NMR (CDCl_3): Table I

ent-19-oxo-kaur-16-en-15-one (2)

\[\alpha^D_0 = -98° \ (CHCl_3); \text{EI-MS } m/z \ (\text{rel. int.}): 300.3 [M]+ (16), 271(13), 173(11), 161(15), 149(26), 135(25), 119(31), 107(45), 95(37), 91(100); IR \nu_{\text{max}} \ cm^{-1}: 2980, 1727, 1645; \ ^1H-NMR (CDCl_3) \delta_H 10.34 (1H, 5, H-20), 5.83 (1H, 5, H-17A), 5.18 (1H, brs, H-17B), 2.98 (1H, brs, H-13), 2.36 (1H, d, J = 11.9 Hz, H-11), 2.03 (3H, s, H-22), 1.79 (1H, brd, J = 13.0 Hz, H-1α), 1.00 (3H, s, H-20), 0.92 (3H, s, H-18); \ ^13C-NMR (CDCl_3): Table I

ent-11α-acetoxy-20-oxo-kaur-16-en-15-one (3)

\[\alpha^D_0 = -86° \ (CHCl_3); \text{EI-MS } m/z \ (\text{rel. int.}): 330.3 [M-CO]^+ (0.8), 314(1.4), 296(2.7), 269(7), 253(6), 217(7), 160(14), 145(10), 133(13), 126(20), 111(55), 91(34), 69(31), 43(100); IR \nu_{\text{max}} \ cm^{-1}: 2980, 1727, 1713(5), 1645; \ ^1H-NMR (CDCl_3) \delta_H 10.34 (1H, s, H-20), 5.83 (1H, s, H-17A), 5.18 (1H, s, H-17B), 5.24 (1H, t, J = 3.2 Hz, H-11), 2.98 (1H, brs, H-13), 2.67 (1H, d, J = 13.6 Hz, H-1α), 1.80 (3H, s, H-22), 0.93
ent-11α-acetoxy-15-oxo kaur-16-en-20-acid (4)

\[\Delta^0 \rightarrow 43^\circ (\text{CHCl}_3); \text{EI-MS } m/z \text{ (rel. int.): } 374.3 \]

M. Flegel and H. Becker • Di- and Triterpenoids from Blepharidophyllum (3H, s, H-18), 0.75 (3H, s, H-19); 13C-NMR (CDCl₃): Table I

ent-11α-acetoxy-7β-hydroxy-kaur-16-en-15-one (5)

\[[\alpha]_{D}^{0} \rightarrow -86^\circ (\text{CHCl}_3); \text{CI-MS } m/z \text{ (rel. int.): } 300.0 \]

Acknowledgements
The authors thank Prof. R. Mues, Saarbrücken, for providing the plant material and Dr. Josef Zapp for recording the NMR spectra.

