Charging of Both, Plastidal tRNA\textsubscript{gln} and tRNA\textsubscript{glu} with Glutamate and Subsequent Amidation of the Misacylated tRNA\textsubscript{gln} by a Glutamyl-tRNA Amidotransferase in the Unicellular Green Alga \textit{Scenedesmus obliquus}, Mutant C-2A'

U. C. Vothknecht* and D. Dörnemann

Fachbereich Biologie/Botanik, Philippus-Universität Marburg, Karl-v.-Frisch-Straße, D-35032 Marburg, Bundesrepublik Deutschland

Z. Naturforsch. 50c, 789–795 (1995); received June 16/August 28, 1995

C\textsubscript{5}-Pathway, Glutamyl-tRNA\textsubscript{glu}-Synthetase (E.C.6.1.1.17), Misacylation of tRNA\textsubscript{glu}, Amidotransferase, \textit{Scenedesmus obliquus}

In a previous paper we described the purification of a glutamyl-tRNA synthetase from the unicellular green alga \textit{Scenedesmus obliquus}, mutant C-2A'. We now demonstrate that, firstly, this enzyme is capable of mischarging plastidial tRNA\textsubscript{gln} from barley with glutamate, as well as it regularly charges the plastidial tRNA\textsubscript{glu} from \textit{Scenedesmus}. Secondly, we show that the mischarged glutamyl-tRNA\textsubscript{gln} is subsequently amidated by a glutamyl-tRNA amidotransferase to form the glutaminyl-tRNA\textsubscript{gln} required for plastidial protein biosynthesis. This phenomenon could already be demonstrated for higher plant chloroplasts, mitochondria, cyanobacteria and gram-positive bacteria, as far as investigated. As recently shown the applied glutamyl-tRNA synthetase from \textit{Scenedesmus} is a plastidial enzyme. In this paper we prove by treatment with monobromobimane and cyanogen bromide that the „regular“ substrate of the enzyme, tRNA\textsubscript{glu} from \textit{Scenedesmus}, is a plastidial tRNA with the plastid-specific sulfur modification in the anticodon. In the case of cyanogen bromide treatment, a total inactivation of the tRNA was achieved, revealing the presence of a sulfur modification in the plastid-tRNA\textsubscript{glu} anticodon.

Introduction

Glutamyl-tRNA synthetase catalyses the first step of the C\textsubscript{5}-pathway to 5-aminolevulinate (ALA) by charging the corresponding tRNA\textsubscript{glu} with glutamate. So far, only a few synthetases could be purified and characterized (wheat, Rati

Abbreviations: ALA, 5-aminolevulinate; gln, glutamine; glu, glutamate; gly, glycine; leu, leucine; mam5s2 U, 5-[(methyl-amino)methyl]-2-thiouridine; TCA, trichloroacetic acid; TLC, thin layer chromatography.

* Present address: Carlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark.

Reprint requests to Dr. D. Dörnemann.

Fax: +49-6421-282057.
plied catalytic components is of great importance, as it is impossible to isolate intact chloroplasts from *Scenedesmus* (like it is from many other green algae). This implies the risk of cytoplasmic or mitochondrial contaminations in the assays, possibly leading to wrong conclusions. Therefore we here will furthermore demonstrate that also the applied tRNA_{glu} from *Scenedesmus*, the „regular“ substrate of the enzyme, is of plastidal origin.

Materials and Methods

Chemicals

Monobromobimane and methionine sulfoximine were obtained from Sigma (St. Louis, U.S.A.), cyanogen bromide from Aldrich (Deisenhofen, F.R.G.). All other applied chemicals were p.a. grade or of the highest available purity. Protein determinations were performed with Biorad-reagent (Biorad, Bad Soden, FRG.) following the method of Bradford (1979). Yeast- and *E.coli* total tRNA, as well as *E.coli* tRNA_{gln} were supplied by Sigma (Deisenhofen, F.R.G.) and *E.coli*-tRNA_{gln} by Subriden RNA (Rollingbay, U.S.A.). The plastidal tRNA-preparation and the purified plastidal tRNA_{gln} from barley were a kind gift from Dr. C.G. Kannangara (Carlsberg Laboratory, Copenhagen, Denmark).

Plant material and cell growth conditions

For all experiments cells of the X-ray induced mutant C-2A' of *Scenedesmus* (Bishop, 1971) were employed. As greening of the mutant is light-dependent (Senger and Bishop, 1972), after 72–96 h of heterotrophic growth the cells were exposed to white fluorescent light of an intensity of 20 W m⁻² for 6 h. Further culturing conditions, determination of the cell density and harvesting were described earlier (Vothknecht *et al.*, 1994).

Origin of Scenedesmus enzyme- and tRNA preparations

After harvesting cells were broken and a 300 000xg supernatant prepared (Vothknecht *et al.*, 1994). For loading of the different tRNAs the eluate of a Blue Sepharose affinity column or, alternatively, purified glutamyl-tRNA synthetase was employed. Both preparations were obtained as recently described (Vothknecht *et al.*, 1994). The required glutamyl-tRNA amidotransferase activity is present in the Blue Sepharose eluate which in turn was used as the enzyme source. The total tRNA-preparation from *Scenedesmus* was obtained from the eluate of a chlorophyllin Sepharose affinity column as described by Breu and Dörnemann (1988).

Enzyme assays

Charging of the different tRNAs with labelled glu and gln

Loading of the different total tRNA preparations (100 μg per assay) and specific tRNAs (5 μg per assay) with labelled substrates as well as the determination of the bound radioactivity was performed as described earlier (Vothknecht *et al.*, 1994).

Determination of glutamyl-tRNA amidotransferase activity

Measurement of the enzyme activity of glutamyl-tRNA-amidotransferase was performed following the modified method of Wilcox and Nirenberg (1968) in 100 mm Tricine-buffer, pH 7.9. The assay mixture contained total tRNA from barley (100 μg), 1 mm ATP, 1 mm unlabelled gln, 5 mm methionine sulfoximine, 100 μl of Blue Sepharose preparation from *Scenedesmus* and 10 μCi of L-[2,3-³H]-glu in a total volume of 500 μl. After incubation for 30 min at 28 °C the reaction was stopped by the addition of 50 μl of icecold 100% TCA. The precipitate was collected by centrifugation for 5 min in an Eppendorf-centrifuge (Eppendorf, Hamburg, F.R.G.) and the supernatant discarded. After hydrolysis of the bound amino acids from the tRNA by adding 1 ml of 20 mm KOH, samples were adjusted to pH 6–6.5 with 1 m HCl, administered to Dowex 1x8 columns (3 ml bedvolume) and the columns washed with 2 ml of bidistilled water. The collected eluates were lyophilized over night and then dissolved in 40 μl of bidistilled water. The collected spots were then applied as a spot to a TLC-plate coated with cellulose (20 x 20 cm, coating 0.25 mm, Merck, Darmstadt, F.R.G.) together with reference spots of unlabelled plus labelled glu and gln. The chromatogram was developed with 2-propanol/formic acid/H₂O (80/20/4; v/v/v). The references were visu-
alized by spraying with ninhydrin and additionally by radio-TLC-scanning with a TLC-scanner (Model Rita, Raytest, Straubenhart, F.R.G.). The tracks with the labelled compounds were also analyzed by TLC-scanning. For quantitative analysis the track was scraped off in patches of 0.5 cm height, transferred to scintillation vials with Ready Safe (Beckmann, München, F.R.G.) as scintillation cocktail and the radioactivity determined in a liquid scintillation counter (Betamatic II, Kontron, Neufahrn, F.R.G.).

Treatment of total tRNA with monobromobimane

Following the method of Kosower (1978) 1 mg of a total tRNA-sample from Scenedesmus were dissolved in 350 μl of 1 m Tris-buffer, pH 8.8, and 2 μl of a monobromobimane solution (200 mM, in methylcyanide) added. After an incubation time of 15 min at room temperature the excess of the reagent was removed by extracting the tRNA with phenol/chloroform/isoamyl alcohol (25/25/1 v/v/v). Subsequently, the tRNA was precipitated with ethanol, collected by centrifugation (Eppendorf-Centrifuge) and redissolved in 50 μl of bidistilled water. Fluorescence was detected with a Shimadzu RF 540 fluorometer (Shimadzu-Europa, Duisburg, F.R.G.). An untreated sample was used as reference. Excitation wavelength was 220 nm (5nm bandwidth), emission was determined between 290 and 400 nm (10 nm bandwidth). Finally, loading experiments with labelled glutamate were performed as described above.

Treatment of total tRNA with cyanogen bromide

Following the method of Saneyoshi and Nishimura (1970) 50 μl of 1 m sodium carbonate buffer, pH 8.9, were mixed with 5 mg of a total tRNA preparation from Scenedesmus. 2.5 mg of cyanogen bromide, dissolved in 100 μl of 10% (v/v) aqueous ethanol were added and the reaction mixture incubated for 10 min under vigorous stirring at room temperature. To remove excess cyanogen bromide the tRNA was twice precipitated with ethanol, redissolved in bidistilled water, and finally taken up again in 500 μl of the same solvent. Subsequently, loading experiments with labelled glutamate were performed as described above.

Results and discussion

In this paper more evidence for the plastidal origin of the glutamyl-tRNA synthetase from Scenedesmus, which was purified to apparent homogeneity (Vothknecht et al., 1994) will be given by the fact that it is highly specific for tRNAglu from plastids and bacteria. Furthermore, it will be demonstrated that the enzyme is capable of mischarging plastidal tRNAglu with glu which is again characteristic for the plastidal glutamyl-tRNA synthetase. Finally, it will be shown that the regular substrate of glutamyl-tRNA synthetase, tRNAglu, is also of plastidal origin.

Charging of different tRNA-preparations with glu by Scenedesmus glutamyl-tRNA-synthetase

Highly purified glutamyl-tRNA synthetase (Vothknecht et al., 1994) was used for the charging experiments. The charging of total tRNA from Scenedesmus, barley and yeast, purified tRNAglu from E.coli and tRNAgln from barley and E.coli in the presence of labelled glutamate is shown in Table la. Insignificant or no charging could be observed in the case of the total tRNA from yeast and with tRNAgln from E.coli, while all other tRNAs could be loaded.

From the fact that both, tRNAglu and tRNAgln from barley plastids, and also tRNAglu from E.coli were charged (Table Ib), it can be concluded that the Scenedesmus enzyme is a plastidal one since, so far, no cytoplasmic glutamyl-tRNA synthetase is described that misacylates tRNAglu. That the cytoplasmic tRNA from yeast is loaded much less efficiently by the purified Scenedesmus glutamyl-tRNA synthetase is in agreement with results from Chlamydomonas where the purified plastidal glutamyl-tRNA synthetase (Chen et al., 1990) was not able to charge tRNA from yeast and further confirms the plastidal origin of the purified Scenedesmus enzyme.

Mischarging of tRNAgln by the Scenedesmus glutamyl-tRNA synthetase

Furthermore, also tRNAgln from barley is charged with glu by the Scenedesmus glutamyl-tRNA-synthetase (Table Ia). This ‘mischarging’ of gln-specific tRNA with glu was already reported for the glutamyl-tRNA synthetases from gram-
Table I. Charging of tRNA-preparations of different origin with glu and gln.

<table>
<thead>
<tr>
<th>tRNA-sample</th>
<th>labelled substrate</th>
<th>tRNA-bound substrate [μmoles-min⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) charging with glu by highly purified glutamyl-tRNA synthetase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total tRNA, Scenedesmus</td>
<td>glutamate</td>
<td>1.6x10⁻⁶</td>
</tr>
<tr>
<td>total tRNA, barley plastids</td>
<td>glutamate</td>
<td>1.4x10⁻⁶</td>
</tr>
<tr>
<td>total tRNA, yeast</td>
<td>glutamate</td>
<td>0.09x10⁻⁶</td>
</tr>
<tr>
<td>tRNA<sub>glu</sub>, E. coli</td>
<td>glutamate</td>
<td>2.5x10⁻⁶</td>
</tr>
<tr>
<td>tRNA<sub>gln</sub>, barley plastids</td>
<td>glutamate</td>
<td>3.6x10⁻⁶</td>
</tr>
<tr>
<td>tRNA<sub>gln</sub>, E. coli</td>
<td>glutamate</td>
<td>–</td>
</tr>
<tr>
<td>b) charging with gln by a crude Blue Sepharose protein preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total tRNA, Scenedesmus</td>
<td>glutamine</td>
<td>0.03x10⁻⁶</td>
</tr>
<tr>
<td>total tRNA, yeast</td>
<td>glutamine</td>
<td>–</td>
</tr>
<tr>
<td>tRNA<sub>gln</sub>, barley plastids</td>
<td>glutamine</td>
<td>–</td>
</tr>
<tr>
<td>tRNA<sub>gln</sub>, E. coli</td>
<td>glutamine</td>
<td>–</td>
</tr>
</tbody>
</table>

positive bacteria (Wilcox and Nirenberg, 1968), *Halobacterium volcanii* (Gupta, 1984) and higher plant organelles (Schön et al., 1988; Schön and Söll, 1988b). However, the mischarging does not take place in gram-negative bacteria like *E. coli*.

In parallel experiments the loading of the different tRNA-preparations with gln was tested with crude *Scenedesmus* enzyme extracts. Only traces of glutaminyl-tRNA synthetase activity could be found when *Scenedesmus* total tRNA was used. The same result was obtained by using a Blue Sepharose enzyme preparations (Table 1b) which contain all aminoacyl-tRNA synthetases, as partially shown in Fig. 2 by the controls. This result indicates the absence of a plastidial glutaminyl-tRNA synthetase in *Scenedesmus obliquus* and is in agreement with data from chloroplasts, mitochondria, cyanobacteria, archaeabacteria and gram-positive bacteria, as already stated above (Wilcox and Nirenberg, 1968; Gupta, 1984; Schön et al., 1988b). The traces of glutaminyl-tRNA activity are probably due to the presence of cytoplasmic glutaminyl-tRNA synthetase in these preparations.

In all the above documented cases the absence of a glutaminyl-tRNA synthetase and the resulting mischarging of tRNA_{gln} with glu by a glutamyl-tRNA synthetase is compensated by the presence of a glutamyl-tRNA amidotransferase which converts the glutamyl-tRNA_{gln} into glutamyl-tRNA_{gln}. In *in vitro* experiments gln is the aminodonor for this reaction (Schön et al., 1988; Strauch et al., 1988; Jahn et al., 1990). The involved enzyme, glutamyl-tRNA amidotransferase, has only been purified from *Chlamydomonas* (Jahn et al., 1990).

Amidotransferase activity in Scenedesmus

Thus we tried to prove the existence of this particular glutamyl-tRNA amidotransferase also in *Scenedesmus*. Following the modified method of Wilcox and Nirenberg (1968) total tRNA-preparations from barley plastids were incubated with labelled glu, a Blue Sepharose enzyme preparation and unlabelled gln as aminodonor. As a control, unlabelled gln as the amino donor of the transamidation reaction was omitted. The bound amino acids were subsequently split off the tRNAs by hydrolysis and glu and gln separated by ion exchange chromatography. The gln containing fraction was analyzed by TLC with labelled and unlabelled glu and gln as references, additionally visualizing the amino acids be sprayin with ninhydrin. As shown in Fig. 1, only in the case of added, unlabelled gln as aminodonor labelled gln could be detected. As glutamine synthetase was inhibited by methionine sulfoximine this clearly demonstrates the presence of a glutamyl-tRNA amidotransferase in the Blue Sepharose enzyme preparation from *Scenedesmus*. From these results it has to be concluded that also in *Scenedesmus*-chloroplasts, like in other so far examined plastids, a glutaminyl-tRNA synthetase is missing and that this deficit is compensated by the mischarging of tRNA_{gln} with glu by glutamyl-
tRNA synthetase and subsequent transamidation of the bound glu to gln by a glutamyl-tRNA amidotransferase. Further attempts will be made to isolate, purify and characterize this enzyme from *Scenedesmus*.

Sulfur modification in the the*

Scenedesmus-tRNA\(^{\text{ glu }}\) - anticodon

To prove that the main part of the tRNA\(^{\text{ glu }}\) in our experiments is of plastidal origin, attempts were made to show that like in the barley plastid tRNA\(^{\text{ glu }}\) (Schön *et al.*, 1986) a sulfur modification is present in the *Scenedesmus* tRNA\(^{\text{ glu }}\)-anticodon, too.

Common to all tRNAs are posttranslational modifications of nucleotides. From experiments with purified tRNA\(^{\text{ glu }}\) from barley chloroplasts it is known that ten modified nucleotides are present (Schön *et al.*, 1986). Most striking was the existence of a 5-[methylamino]-methyl]-2-thoridine (mam\(^5\)s\(^2\)U) in the first position of the UUC-anticodon, a modification which is known from tRNAs from eubacteria (Sprinzl *et al.*, 1989). When these at the anticodon sulfur-modified tRNAs are treated with cyanogen bromide and by this converted into their thiocyanate derivatives their charging with glu is nearly completely inhibited (Saneyoshi and Nihimura, 1971; Agris *et al.*, 1973). Hybrid-tRNAs missing this modification also showed only reduced loading with glu (Sylvers *et al.*, 1993).

Taking into account these data we tested the total tRNA preparation from *Scenedesmus* for the presence of a sulfur modification and thus the inhibition of its charging with glu by treatment with monobromobimane and cyanogen bromide. Following the method of Kosower (1978) total tRNA-preparations were treated with monobromobimane. Afterwards sample and untreated control were examined for their fluorescence (for details see Methods). Compared to the control the treated sample showed an approx. 6-fold increase in fluorescence at 307 nm, clearly indicating the presence of a sulfur modification in the *Scenedesmus*-tRNA. Charging experiments of treated and untreated probes with labelled glu, however, only revealed a 10% inhibition in the treated sample. From this quite poor inhibitory effect it cannot be
concluded that the specific sulfur modified anticodon is present also in the *Scenedesmus* tRNA\(^{\text{glu}}\). The effect might rather be due to some chemical destruction during the purification procedure after the reaction or to other sulfur modifications in the molecule, not related to the anticodon. From other eucaryotic tRNAs such modifications with sulfur are known (Björk *et al.*, 1987). From this experiment it can thus only be concluded that also in *Scenedesmus* tRNA\(^{\text{glu}}\) sulfur modifications might be present, however, their location in the anticodon cannot be derived from these data.

As the above method did not yield unambiguous results, treatment of the tRNA with cyanogen bromide was employed. The reagent reacts quantitatively with thiorididine to form the corresponding thiocyanate (Saneyoshi and Nishimura, 1970). After treatment with BrCN and purification of the sample, only 3% of the original charging capacity of tRNA\(^{\text{glu}}\) with glu as substrate could be recovered (Fig. 2). This is in accordance with results from *E. coli* tRNA (Saneyoshi and Nishimura, 1971), where an inhibitor of 6% of the original charging capacity for tRNA\(^{\text{glu}}\), tRNA\(^{\text{gln}}\) and tRNA\(^{\text{lys}}\) was found. All these tRNAs contain this specific thioridin modification in the anticodon. Thus the dramatic inhibitory effect of the BrCN-treatment on *Scenedesmus*-tRNA\(^{\text{glu}}\) can only be attributed to the presence of a sulfur modification in the anticodon. To exclude that the inhibition is solely due to chemical destruction of the tRNA-preparation, as a control charging experiments with glycine and leucine were performed. In these studies the original charging capacity was retained by about 70% (Fig. 2), indicating that the inhibitory effect on tRNA\(^{\text{glu}}\) is highly specific and due to the presence of the anticodon-sulfur-modification. The presented data thus make the presence of the mam\(^{\text{s}}\text{s}²\text{U}-\text{anticodon in } Scenedesmus \text{ most likely. Final evidence, however, can only be given by sequencing of the tRNA which is the aim of our present work on the compound.}

Acknowledgements

The authors acknowledge the continuous support and discussions by Prof. Dr. H. Senger. U.C. Vothknecht is grateful for a Nachwuchsforderungsstipendium des Landes Hessen. We also thank Ms. B. Zinn and J. Gade for skillful technical assistance. We are indebted to Dr. C. G. Kannangara (Carlsberg Institute, Copenhagen, Denmark) for the donation of tRNA from barley. Furthermore, we thank Prof. Dr. Diter von Wettstein and Dr. C. G. Kannangara for the good cooperation and for the possibility to perform parts of the experiments in the Carlsberg Institute. The authors also want to thank Dr. D. Jahn (FB Biologie/Mikrobiologie, Philipps-University, Marburg, FRG) for the tRNA\(^{\text{glu}}\) from *E. coli*. This work was supported by a grant of the Deutsche Forschungsgemeinschaft to D.D.