Polybrominated Non-Terpenoid C_{15} Compounds from Laurencia paniculata and Laurencia obtusa

Sedat Imrea, Zeynep Aydoğmuşa, Hüseyin Günerb, Hermann Lotterc, and Hildebert Wagnerc

a Faculty of Pharmacy, University of Istanbul, Beyazit-Istanbul, Turkey
b Department of Botany, University of Ege, Izmir-Turkey
c Institute of Pharmaceutical Biologie, University of Munich, München, Bundesrepublik Deutschland

Z. Naturforsch. 50c, 743–747 (1995); received June 12/September 6, 1995

Laurencia paniculata, Laurencia obtusa, Rhodomelaceae, Red Alga, Marine Natural Products

Two polybrominated C_{15}-acetogenins (1,2) isolated from a Mediterranean sponge previously and a new polybrominated bicyclic ether with a bromoallenic side chain (3) were isolated from Laurencia paniculata and Laurencia obtusa respectively. The structures of these compounds were elucidated by spectroscopic methods.

Introduction

Halogenated C_{15} non-terpenoids containing ether rings of different sizes with terminal acetylenic or allenic side chains are common metabolites of red alga of the Laurencia genus. In the course of our study on the secondary metabolites of Laurencia, collected from Turkish coasts, we have isolated several compounds of that type (Imre et al., 1987; Öztunç et al., 1991). In the present work we report the isolation and structure elucidation of two polybrominated acetylenic cyclic ethers 1 and 2, from L. paniculata, and an allenic cyclic ether 3 from L. obtusa.

Results and Discussion

From the ether extract of L. paniculata, collected at Çeşmealti near Izmir, we isolated a major (2) and a minor (1) compound and from the CHCl_{3}-MeOH (2:1) extract of L. obtusa, collected near Bodrum, a major compound (3), by repeated silica gel column chromatography. Compound 2, mp 142–143°C, [α]_{D}^{25} = +28.9° (CHCl_{3}, c=0.792), showed in its IR spectrum the presence of hydroxyl (3500 cm\(^{-1}\)) and acetylene (3290 and 2120 cm\(^{-1}\)) functions and the absence of carbonyl groups. In the CI-MS it showed M+1\(^{+}\) peaks at m/z 565, 567, 569, 571, 573 which indicated the presence of four bromine atoms. The \(^{13}\text{C}\)-NMR DEPT spectra of compound 2 revealed the presence of one methyl, three methylene, four halogen-bonded, five oxygen-bonded methine and a terminal acetylene group, and fully substituted carbon atoms. Acetylation of 2 yielded a monoacetate 2a [M+1\(^{+}\) in CI-MS: m/z 607, 609, 611, 613, 615] which showed no hydroxyl absorption in its IR spectrum. Hence compound 2 has the molecular formula C_{8}H_{20}Br_{4}O_{3} with four double bond equivalents and therefore it must contain two ether rings. Detailed 1H-NMR spin decoupling experiments together with 1H-1H and 1H-\(^{13}\text{C}\) COSY spectra led to the carbon skeleton for 2 as shown in Fig.1.

In the EI-MS of 2 ions at m/z 295, 297, 299 and 269, 271, 273 correspond to C_{8}H_{20}Br_{2}O_{2} and C_{8}H_{18}Br_{2}O, respectively, arising from fragmentation of the C_{n}-C_{m} bond which suggests the presence of ether linkages between C_{n}-C_{7} and C_{m}-C_{13}. Therefore compound 2 has two isolated ether rings (oxolane and tetrahydropyrane). The absolute stereochemistry of 2 was established by X-ray
analysis. A perspective drawing is shown in Fig. 2. Subsequently we found out, that two similar compounds, containing four (4) and three (5) bromine atoms, had been isolated recently from the Mediterranean sponge Mycale rotalis (Giordano et al., 1990). In that paper, however, the NMR data and their assignments were not given but comparison of the X-ray absolute configuration of 2 and the tetrabromo compound (4) shows that they are identical.

Only a few mg's of compound 1, mp 145–147°, were isolated. It contains one bromine atom less than 2, the molecular formula C_{15}H_{10}Br_{3}O_{3} [Cl-MS: M+1^+ m/z 485, 487, 489, 491], and therefore has five double bond equivalents. The IR spectrum of 1 indicated the presence of terminal acetylene (3290 and 2120 cm⁻¹) and absence of hydroxyl and carbonyl groups. The EI-MS of compound 1 was similar in part to that of 2, especially the fragments at m/z 269, 271, 273 (C_{7}H_{10}Br_{2}O) which are the base peaks in both spectra. All this evidence suggested that compound 1 must contain three ether rings and was probably identical with compound 5. The comparison of ^1H NMR spectra of both compounds confirmed the identity.

Compound 3, mp 80°, [α]_{D}^{21}=+42.5° (c=0.64, CHCl₃), is unstable in light at room temperature and becomes dark. Its IR spectrum showed the presence of allene (3060 and 1964 cm⁻¹) and hydroxyl (3450 cm⁻¹), and the absence of carbonyl functions. Compound 3 has the same molecular composition C_{15}H_{20}Br_{4}O_{3} as 2. [Cl-MS: M+1^+ m/z 565, 567, 569, 571, 573], confirmed by ^1H- and ^13C-NMR DEPT spectra [CH₃, 3xCH₂, 5xOCH, 4xBrCH, =C=CH] (see Table I). Acetylation of 3 yielded a monoacetate 3a [Cl-MS: M+1^+ m/z 607, 609, 611, 613, 615] which showed no hydroxyl absorption in its IR spectrum. Since the H-7, H-12 and H-13 proton signals overlap in the ^1H-NMR spectrum of 3 (see Table I) we could deduce the carbon skeleton of 3 (Fig.3) from ^1H-^1H and ^1H-^13C COSY spectra of 3a.

Further information about the structure of 3 was obtained from its EI-MS: The fragments at m/z 295, 297, 299 and 269, 271, 273 which contains two bromine atoms and correspond, respectively, to the ions [C_{8}H_{5}Br_{2}O₂]⁺ and [C_{7}H_{11}Br_{2}O]⁻ indicated a C₈-C₉ fragmentation. This fragmentation occurs also in EI-MS of 2 which contains a CHBr unit between two ether rings. Hence the ether linkage must be between C₇-C₇ and C₉-C₁₂ and therefore 3 has two oxolane rings. Since the attempts to obtain a suitable crystals of compound 3 for X-ray analysis were failed we could give only its planar structure.
From the fractions 71-83 (Et₂O) of *L.* obtusa extract we obtained pure compound 3 (280 mg) also.

Table I. ¹³C- and ¹H-NMR Spectral Data of 2, 2a and 3, 3a.

<table>
<thead>
<tr>
<th>Carbon No.</th>
<th>δC (ppm)</th>
<th>δH (J, Hz)</th>
<th>δH (J, Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77.19</td>
<td>2.78 d, 2.3</td>
<td>6.10 dd, 2.0; 6.0</td>
</tr>
<tr>
<td>2</td>
<td>80.83</td>
<td>201.34</td>
<td>6.08 dd, 1.7; 5.7</td>
</tr>
<tr>
<td>3</td>
<td>35.86</td>
<td>102.10</td>
<td>5.63 t, 6.0</td>
</tr>
<tr>
<td>4</td>
<td>79.06</td>
<td>74.17</td>
<td>5.6 dd, 6.0</td>
</tr>
<tr>
<td>5</td>
<td>38.18</td>
<td>40.84</td>
<td>4.63 dd, 2.0; 7.5; 7.5</td>
</tr>
<tr>
<td>6</td>
<td>70.28</td>
<td>72.25</td>
<td>4.64 dddd, 15.6; 6.8; 7.0</td>
</tr>
<tr>
<td>7</td>
<td>87.00</td>
<td>80.81</td>
<td>4.17-4.23 m</td>
</tr>
<tr>
<td>8</td>
<td>53.00</td>
<td>54.11</td>
<td>4.26 dd, 4.7; 5.0</td>
</tr>
<tr>
<td>9</td>
<td>79.88</td>
<td>81.53</td>
<td>4.46 dd, 5.4</td>
</tr>
<tr>
<td>10</td>
<td>46.63</td>
<td>48.21</td>
<td>4.29 dd, 4.7; 6.0</td>
</tr>
<tr>
<td>11</td>
<td>45.13</td>
<td>42.08</td>
<td>4.06 dd, 4.9; 6.0</td>
</tr>
<tr>
<td>12</td>
<td>47.57</td>
<td>80.95</td>
<td>4.43 dddd, 15.6; 6.8; 7.0</td>
</tr>
<tr>
<td>13</td>
<td>83.74</td>
<td>59.73</td>
<td>4.27 dd, 4.9; 6.9</td>
</tr>
<tr>
<td>14</td>
<td>25.82</td>
<td>28.40</td>
<td>4.06 dd, 4.7; 6.0</td>
</tr>
<tr>
<td>15</td>
<td>9.74</td>
<td>11.47</td>
<td>4.43 dddd, 15.6; 6.8; 7.0</td>
</tr>
<tr>
<td>OAc</td>
<td></td>
<td>2.25 s</td>
<td>4.43 dddd, 15.6; 6.8; 7.0</td>
</tr>
</tbody>
</table>

Assignments made by ¹H–¹H and ¹H–¹³C COSY. Recorded in CDCl₃ at a 100 MHz, b 360 MHz and c 400 MHz.

The isolation of two compounds (1,2) first time, from a *Laurencia* species, *Laurencia paniculata*, is an interesting result, because these compounds have been isolated previously also from a Mediterranean sponge. In this case the theory that the secondary metabolites can be transferred to the sponges by macroorganisms besides the microorganisms (Guella *et al.*, 1992) is supported. In addition, to our knowledge this is the first report on the isolation of C₁₅-acetonides with four bromine atoms (2 and 3) from a *Laurencia* species.

Experimental

General procedure

Melting points were determined on a melting point microscope (Reichert) and are uncorrected. The IR spectra were recorded on Perkin Elmer-577. Mass spectra were taken on AEI MS 30 and Kratos MS 50 (reagent gas for CI-MS: NH₃). ¹H and ¹³C NMR spectra were recorded on 360 MHz Bruker and 400 MHz JOEL apparatus. The following silica gels were used: Silica gel 60 (Merck) for column chromatography, Silica gel 60 GF₂₅₄ (Merck) for analytical (0.2 mm) and preparative (0.5 mm) TLC.

Plant material

Laurencia paniculata and *Laurencia obtusa* were collected in May 1989 at Çeşmealtı near Izmir, and in May 1992 at Güvercinlik near Bodrum, respectively. Voucher specimens from both species were deposited in the Department of Botany, University of Ege, Izmir.

Isolation of 1, 2 and 3

Air-dried *L.* paniculata (300 g) was extracted with Et₂O (Soxhlet) and *L.* obtusa (360 g) was macerated with CHCl₃-MeOH (2:1). Both extracts (2.70 and 14 g, respectively) were chromatographed on silica gel columns (35–70 mesh; 60×3.5 cm) with petrol and increasing amounts of Et₂O (v/v). From fractions 32–34 (petrol-Et₂O, 10:1) and 55–58 (2:1) of *L.* paniculata extracts compound 1 (6 mg) and 2 (104 mg) were obtained in pure state after rechromatography on silica gel column (70–230 mesh; 20×1.5 cm; eluant CHCl₃), and crystallization from hexane-Et₂O, respectively. From the fractions 71–83 (Et₂O) of *L.* obtusa extract we obtained pure compound 3 (280 mg) also.
after rechromatography on silica gel column (same conditions) and crystallization from hexane-Et₂O.

Compound 2

Colorless crystals, m.p. 142–143°C; [α]D²⁵ = +28.9° (c=0.792, CHCl₃); IR νₘₐₓ (KBr) 3500, 3290, 2120, 1440, 1352, 1290, 1195, 1100, 945, 810, 710, 665 cm⁻¹; ¹H and ¹³C NMR (see Table I); MS m/z (rel. int.) CI 565, 567, 569, 571, 573 (2.9:11.7:17.7:11.0:2.2) [M⁺], EI 485, 487, 489, 491 (1:1.2:9.2:9.1) [M-Br]⁺, 467, 469, 471, 473 (1.1:3.7:2.9:0.7) [M-Br₂H₂O]⁺, 429, 431, 433, 435 (2.8:8.7:4.2:2) [M-C₂H₅Br₂H₂O]⁺, 405, 407, 409 (18.4:32.4:16.2) [M-Br-HBr]⁺, 349, 351, 353 (64:100:61) [M-C₆H₅Br₂H₂O-BrH₂]⁺, 325, 327 (19.1:17.6) [M-Br₂xHBr]⁺, 307, 309 (11:10.7) [M-Br₂xHBr-H₂O]⁺, 295, 297, 299 (6.6:12.7:8.1), 269, 271, 273 (42.6:65.4:26.5).

Preparation of 2 acetate

Compound 2 (10 mg) was treated with Ac₂O and pyridine at room temp. to give 2a. Colorless crystals from hexane, m.p. 123°C; IR νₘₐₓ (KBr) 3256, 1735, 1385, 1245, 1105, 1053, 947, 700, 662 cm⁻¹; ¹H NMR (see Table I); CI-MS m/z (rel. int.) 607, 609, 611, 613, 615 (0.4:0.7:1:1.0:7.0) [M⁺][A], 527, 529, 531, 533 (1:1.3:3.7:3.0) [M⁺-Br]⁺, 467, 469, 471, 473 (1.5:4.4:3.7:1.1) [M⁺-AcOH-HBr]⁺, 387, 389, 391, (5:1.1:3.5:5.1) [M⁺-AcOH₂xHBr]⁺, 349, 351, 353, (50:7.6:9:48.5) [M⁺-AcOH₂C₂H₅Br-HBr]⁺, 307, 309 (8:1.8:8.8) [M⁺-AcOH₂C₂H₅Br]⁺, 269, 271, 273 (12.5:16.2:4.8), 245, 247 (16.5:14.7), 189 (45.6) [M⁺-AcOH₂C₂H₅Br]⁺.

X-ray structure analysis of 2

Slow evaporation of a hexane solution yielded colorless plates of size 0.70x0.75x0.50 mm. Crystal data: orthorombic space group P2₁(1)2(1)2(1), a= 8.862(3) Å, b=10.282(3) Å, c=21.279(7) Å, Z=4, d=1.946 g/cm³; on a Siemens R3m diffractometer, 1525 unique reflections were measured with Ni-filtered CuKα radiation, 1444 observed with F=40(F). Absorption correction was applied. The structure was solved by direct methods using SHELXTL*. The hydrogen atoms were calculated from the positions of the carbons to which they are bound. Anisotropic refinement cycles converged at wR=6.92% (weights: w⁻¹ = a² (F) + 0.0022F²). The absolute configuration was determined using Rogers η-refinement. The crystal structure is shown in Fig. 3. The atomic coordinates as well as the bond distances and angles are deposited at the Cambridge Crystallographic Data Center.

Compound 1

Colorless crystals, m.p. 145–147°C; IR νₘₐₓ (KBr) 3290, 2120, 1450, 1380, 1195,1060, 940, 876, 800,660 cm⁻¹; ¹H NMR: it was identical with the spectrum of compound 5; MS m/z (rel. int.) CI 485, 487, 489, 491 (27.2:73.5:73.1:24.6) [M⁺⁺], EI 405, 407, 409 (2.2:4.0:2.2) [M⁺-Br]⁺, 394, 351, 353, 355 (2.2:5.9:5.9:1.8), 325, 327 (7.4:6.6) [M⁺-2xHBr]⁺, 269, 271, 273 (20.2:37.5:19.1), 245 (11).

Compound 3

Colorless crystals, m.p. 80°C, [α]D²¹ = +42.5° (c= 0.64, CHCl₃); IR νₘₐₓ (KBr) 3450, 3060, 1964, 1440, 1200, 1060, 850, 655 cm⁻¹; ¹H and ¹³C NMR (see Table I); MS m/z (rel. int.) CI 565, 567, 569, 571, 573 (5:1.1:8.4:25.4:16.2) [M⁺⁺], EI 485, 487, 489, 491 (1.5:3.4:4.4:1.5) [M⁺⁺], 467, 469, 471, 473 (0.7:2.2:2.2:0.7) [M⁺-H₂O]⁺, 447, 449, 451, 453 (6:6:16:2.15:8:5:1) [M⁺-C₂H₅Br]⁺, 429, 431, 433, 435 (1.5:4.4:4:0.15) [M⁺-C₂H₅Br-H₂O]⁺, 405, 407, 409 (2.9:4.4:2.2) [M⁺-HBr]⁺, 387, 389, 391 (1:1.2:6:1.5) [M⁺-Br-HBr-H₂O]⁺, 349, 351, 353 (5:5:11:5.1) [M⁺-C₂H₅Br-O-HBr]⁺, 295, 297, 299 (5.9:9.9:5.9) [M⁺-C₂H₅Br₂O]⁺, 269, 271, 273 (17.6:28.7:12.5) [M⁺-C₃H₅Br₂O₂]⁺.

Preparation of 3 acetate

Compound 3 (10 mg) was treated with Ac₂O and pyridine at room temp. to give 3a as an oil: [α]D²¹ = +64° (c= 0.5, CHCl₃); IR νₘₐₓ (CHCl₃) 3060, 1960, 1735, 1440, 1370, 1230, 1080, 940, 800, 660 cm⁻¹; ¹H NMR (see Table I); EI-MS m/z (rel. int.) 607, 609, 611, 613, 615 (0.4:1.1:1.5:1.1:0.4)

[M+1]^+, 547, 549, 551, 553, 555 (0.4:0.7:1.1:0.7:0.4)
[M+1-AcOH]^+, 527, 529, 531, 533
(3.3:10.5:10.5:3.6) [M+1-HBr]^+, 467, 469, 471, 473
(4.4:11.8:11.4:5.1) [M+1-AcOH-HBr]^+, 387, 389, 391
(4.4:9.2:5.1) [M+1-AcOH-2xHBr]^+, 349, 351, 353
(46:66.2:43.4) [M+1-AcOH-C_3H_2Br-HBr]^+

Acknowledgements

We thank Dr. H. Lerche (Inst. f. Pharmazie und Lebensmittelchemie, München) for 1D and 2D 400 MHz NMR spectra and Prof. Dr. D. Sica (University of Napoli) for the copy of ^1H NMR spectra of compound 4 and 5.
