Temporal Changes of the Lipid Peroxidation in Rats after Acute Intoxication by Ethanol

Zdenek Zloch

Charles University School of Medicine, Institute of Hygiene, CZ-30166 Pilsen, Czech Republic

Z. Naturforsch. 49c, 359–362 (1994); received October 23, 1993/March 1, 1994

Ethanol, Microsomes, Mitochondria, Lipid Peroxidation, Hepatotoxicity

A group of male rats were intoxicated within 24 h by three successive i.p. doses of ethyl alcohol (7.5 g per 1 kg of the body weight). In parallel, a control group of rats were dosed i.p. with a physiological saline. At time intervals of 0 h, 4 h, 24 h, and 48 h after the intoxication, the content of thiobarbiturate-reactive substances (TBARS) as product of lipid peroxidation within the liver and brain microsomes and mitochondria was followed.

In liver microsomes of the experimental rats there was a rapid increase (by 220%) in the content of TBARS during 4 h after the last application of ethanol, later on the level of lipid peroxidation decreased to the low original value. In other organelles examined only an insignificant increase in the content of TBARS was found. The results prove that an acute intoxication by ethanol does elicit an oxidative stress of the organism, expressed by a transiently increased production of TBARS. These oxidative and harmful changes for the cell structures are mostly located in the liver microsomes but a rapid repair of this damage follows. However, if such a short-term excessive abuse of alcohol is repeated more often, the above changes may lead to severe alcoholic injury to the liver tissue.

Introduction

Most of harmful effects on health of ethyl alcohol is supposed to be caused by reactive oxygen species, especially by some oxygen and other free radicals (McCay et al., 1992; Nordmann et al., 1992). Consequently, their production within intracellular medium is connected with oxidative metabolism of ethanol, and in decisive measure it is thus concentrated in the liver (Lieber, 1991). Oxidative changes of polyunsaturated fatty acids, proteins and other biostructures, on the one hand (Nordmann et al., 1990; Rouach et al., 1987) as well as a decrease in the protective antioxidative potential, on the other hand (Chen et al., 1992; Zidenberg-Cherr et al., 1990), can be found during chronic intoxication by ethanol of experimental animals in various parts of CNS and liver. Both the results of experiments on animals and those of studying the health condition of people demonstrate that in etiopathogenesis of an alcohol-induced organ injury the oxidative destruction of membranes plays a prominent role, manifesting itself predominantly by the increased peroxidation of membrane lipids (Bautista and Spitzer, 1992; Rashba-Step et al., 1993; Reinke et al., 1990).

Nevertheless, a certain part of clinical and experimental works do not confirm any implication of the free radicals in any detrimental effects (Inomata et al., 1987). It appears that it is the conditions of the experiment in question, such as the kind of alcohol abuse model – whether a chronic or an acute one – the nutrition state of the experimental object as well as the volume and frequency of the alcohol doses applied, that essentially influence both the character and extent of an oxidative stress during alcohol intoxication (Nadkarni and D'Souza, 1988; Remmer et al., 1989). The majority of controversial views is based on the results of long-term experiments finished off by one-shot measurements; lack of knowledge is apparent concerning the dynamics of the changes caused by large short-term doses of alcohol. Hence, we have established in some short-term alcohol fed animals the values of lipid peroxides within an intracellular medium, checking up those values repeatedly in the course of 48 h. The results of this experiment were corrected by the values obtained in a paired control group.

Materials and Methods

In our experiment, 48 male rats of laboratory strain (VELAZ Prague) of an average body weight of 230 g were used. One half of the animals...
formed an experimental, the other half a control group.

The animals were fed with standard commercial diet for laboratory rats and supplied with water ad libitum, otherwise being kept in cages at 21 °C and having a cycle of 12 h for a day, and 12 h for a night.

Application of alcohol

30% solution (vol/vol) of ethyl alcohol in a physiological saline was injected i.p. in a dose of 2.5 g of alcohol per 1 kg of body weight. The control group got i.p. the same volume of the pure physiological saline. Three doses were applied within 24 h: at 8.00 in the morning, at 12.00 at noon, and at 8.00 next day in the morning. Food was taken away from the animals 12 h before killing. The animals were decapitated in groups of 6 animals in the following four intervals: a) immediately after the last application of ethanol (alternatively, the pure saline) – 0 h; b) 4 h after; c) 24 h after; d) 48 h after it.

Working up the experimental material

Immediately after killing the animals, their liver and brain were taken out to be stored at a temperature of −25 °C. Having used the ultracentrifugal technique (Ayaz et al., 1976), we managed to isolate mitochondria and microsomes from the above organs in the course of 24 h (1 g of tissue having been homogenized with 5 ml of saccharose solution).

The content of thiobarbituric-reactive substances (TBARS) within the organelles was determined by a test with 2-thiobarbituric acid; establishing the corresponding values in mitochondria was performed after Okhawa et al. (1979), those in microsomes being carried out by a metabolic activation in the presence of NADPH and Fe²⁺ (Ready et al., 1982). The protein content in the biological samples was estimated according to Lowry et al. (1951). In a parallel manner, we used a standard solution of malondialdehyde-bis-(diethylacetal) the results being expressed as the amount of malondialdehyde and related to 1 mg of protein. The values of lipid peroxides (more exactly, those of TBARS) found in the experimental group of animals were reduced by the values found in the controls. The level of ethanol in the blood serum was established by adopting the method of gas chromatography (which is a standard procedure in the practice of forensic medicine).

Statistical significance of the difference between the values obtained in the experimental group and those in control group was determined by means of Student’s t-test.

Results and Discussion

In Table I the lipid peroxides values (means ±S.D.) found in both experimental and control group are summarized.

Fig. 1 and 2 express the course of the time-bound changes of lipid peroxidation in the liver and brain organelles the values being presented as the difference, for the same organelles and time, between the experimental and control group.

All the data and four curves show an increase within the time interval of 4–12 h after the last application of ethanol to the animals, but a statistically significant change (p < 0.001) was found only in the liver microsomes where the maximum TBARS had been established 4 h after the last dosis of alcohol. The changes in the extent of lipid peroxidation in the liver microsomes were parallel with the changes of ethanol concentration in the blood of the experimental animals, the highest alcoholamia being 0.62 ± 0.18 g/l.

| Table I. Lipid peroxide content in the liver and brain organelles of ethanol-treated and control rats (nmol malondialdehyde per 1 mg protein, mean of six determinations ±S.D.) at four time points after the last ethanol application: control – physiological saline. |
|---|---|---|---|---|
| **Time [h]** | **Liver microsomes** | **Control** | **Liver mitochondria** | **Control** |
| | **Experimental group** | **Control group** | **Experimental group** | **Control group** |
| 0 | 0.87 ± 0.32 | 0.37 ± 0.12 | 1.09 ± 0.55 | 0.48 ± 0.23 |
| 4 | 2.05 ± 0.33 | 0.64 ± 0.21 | 1.11 ± 0.38 | 0.52 ± 0.18 |
| 24 | 1.94 ± 0.41 | 0.71 ± 0.22 | 0.99 ± 0.40 | 0.48 ± 0.17 |
| 48 | 1.04 ± 0.36 | 0.42 ± 0.18 | 0.98 ± 0.34 | 0.45 ± 0.21 |

<table>
<thead>
<tr>
<th>Time [h]</th>
<th>Brain microsomes</th>
<th>Control</th>
<th>Brain mitochondria</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental group</td>
<td>Control group</td>
<td>Experimental group</td>
<td>Control group</td>
</tr>
<tr>
<td>0</td>
<td>1.82 ± 0.55</td>
<td>0.82 ± 0.31</td>
<td>0.64 ± 0.28</td>
<td>0.23 ± 0.11</td>
</tr>
<tr>
<td>4</td>
<td>1.68 ± 0.42</td>
<td>0.88 ± 0.40</td>
<td>1.17 ± 0.45</td>
<td>0.45 ± 0.22</td>
</tr>
<tr>
<td>24</td>
<td>2.04 ± 0.78</td>
<td>0.94 ± 0.38</td>
<td>1.72 ± 0.58</td>
<td>0.77 ± 0.37</td>
</tr>
<tr>
<td>48</td>
<td>1.53 ± 0.49</td>
<td>0.71 ± 0.42</td>
<td>0.85 ± 0.32</td>
<td>0.34 ± 0.15</td>
</tr>
</tbody>
</table>

* Statistical significance between the experimental and control group (p < 0.001).
The above results clearly show that in rats a short-term application of large doses of alcohol does result in an enhanced production of the lipid peroxides within the liver microsomes. This change has a time-limited course, and within a space of 24–48 h after the alcohol intoxication its physiological extent is renewed.

These findings prove analogous to some results ascertained in the experimental rats subjected to a regimen of chronic alcohol intoxication (Dicker and Cederbaum, 1987; Puntarulo and Cederbaum, 1988). Under long-term toxic effects of ethanol, the microsomal ethanol oxidizing system (MEOS) in the liver gets activated, operating then with the isoenzyme cytochrome P 450 2E1 (Ekström and Ingelman-Sundberg, 1989). An enhanced oxidation of the microsomal polyunsaturated fatty acids that was ascertained under these conditions is the consequence of a decreased activity of the enzyme NADPH cytochrome P 450 reductase as well as of an enhanced oxidation of NADPH resulting from the former (French et al., 1993; Kato et al., 1990); from the latter the production of reactive oxygen species (e.g. hydroxyl radical and superoxide anion) and the 1-hydroxyethyl radical is derived, both being effective agents destructing lipid and other oxilabile components of microsomal structures (Albano et al., 1991; Nordmann et al., 1992).

Our results show that even a short-term massive intoxication of rats by ethanol causes a similar mechanism of an intensified lipid peroxidation within the liver microsomes.

This finding is at variance with the ascertainment of the authors (Remmer et al., 1989) who, after an i.p. intoxication of animals by alcohol, did not find any changes in the expired quantity of ethan and n-pentan, nor in other indicators of the oxidative processes. On the contrary, our results are comparable to those of Uysal et al. (1989b), with the difference, however, that this group has proved the maximum increase in lipid peroxidation in the liver mitochondria. These and similar differences in the experimental results often appear owing to different arrangements of the experiments in question and as a result of diverse criteria applied to the evaluation of the pathobiochemical consequences of the toxic effect of ethanol.

Unlike the results published by other authors (Uysal et al., 1989a), our data show that after the acute ethanol intoxication, organelles from the whole brain tissue were not oxidatively changed. This circumstance may have been caused by a
short-term application of the noxa as well as by
the fact that in the brain the intensity of oxidizing
catabolism of ethanol appears too small, so that
even the production of reactive oxygen species
proves little effective.

The oxidative changes in liver microsomes we
have found as a consequence of a short-time ex-
cessive use of ethanol may etiologically be con-
ected with the damaging to liver tissue on the
same principle that comes into force in a chronic,
long-term use of lesser doses of alcohol. Hence
our assumption that a sufficient antioxidative pro-
tection of the organism (e.g. by means of some
biologic antioxidants) might be able to moderate
these harmful effects of alcohol in a desirable way,
appears quite substantiated.

Albano E., Tomasi A., Persson I.-O., Terelius Y., Goria-
Gatti L., Ingelman-Sundberg M. and Dianzani M.-U.
(1991), Role of ethanol-inducible cytochrome P 450
(P 450 IIE1) in catalyzing the free radical activa-
tion of aliphatic alcohols. Biochem. Pharmacol. 41,
1895–1902.

improved method assay for l-gulonolactone oxidase.

Bautista A. P. and Spitzer J. J. (1992), Acute ethanol
intoxication stimulates superoxide anion production
by in situ perfused rat liver. Hepatology 15, 892–898.

Chen L. H., Hu N. and Huang T. L. (1992), Effects of
acute alcohol intoxication on liver antioxidant defense

Dicker E. and Cederbaum A. I. (1987), Hydroxyl radical
generation by microsomes after chronic ethanol con-

Ekström G. and Ingelman-Sundberg M. (1989), Activity
and lipid peroxidation dependent of ethanol-inducible
cytochrome P 450 (P-450 IIE1). Biochem. Pharmacol.
38, 1313–1319.

French S. W., Wong K., Jui L., Albano E., Haghjork
A.-L. and Ingelman-Sundberg M. (1993), Effect of
ethanol on cytochrome P 450 2E1 (CYP 2E1), lipid
peroxidation, and serum protein adduct formation in
relation to liver pathology pathogenesis. Exp. Molec.
Pathol. 58, 61–75.

of evidence for increased lipid peroxidation in etha-
nol-induced centrilobular necrosis of rat liver. Liver
7, 233–239.

Kato S., Kawase T., Alderman J., Inatomi N. and Lieber
C. S. (1990), Role of xanthine oxidase in ethanol-
induced lipid peroxidation in rats. Gastroenterol. 98,

Lieber C. S. (1991), Hepatic, metabolic and toxic effects
15, 573–592.

Lowry O. H., Rosebrough N. J., Farr A. L. and Randall
R. J. (1951), Protein measurement with the Folin

McCay P. B., Reinke L. A. and Rau J. M. (1992),
Hydroxyl radicals are generated by hepatic micro-
somes during NADPH oxidation: relationship to etha-

and free radical-scavenging enzymes in chronically
ethanol-consuming rats: controversy over hepatic

Nordmann R., Ribière C. and Rouach H. (1990),
Ethanol-induced lipid peroxidation and oxidative
stress in extrahepatic tissues. Alcoh. Alcoholism 25,
231–237.

cation of free radical mechanisms in ethanol-induced

Ohkawa H., Ohishi N. and Yagi K. (1979), Assay for
lipid peroxides in animal tissues by thiobarbituric

Puntarulo S. and Cederbaum A. I. (1988), Increased
NADPH-dependent chemiluminescence by micro-
somes after chronic ethanol consumption. Arch. Bio-

Rashba-Step J., Tuuro N. J. and Cederbaum A. I. (1993),
Increased NADPH- and NADH-dependent pro-
duction of superoxide and hydroxyl radical by micro-
somes after chronic ethanol treatment. Arch. Bio-
chem. Biophys. 300, 401–408.

Ready C. Ch., Sholz R. W., Thomas C. E. and Massaro
E. Y. (1982), Vitamin E-dependent, reduced gluta-
thione inhibition of rat liver microsomal lipid peroxi-
dation. Life Sci. 31, 671–678.

Reinke L. A., Rau J. M. and McCay P. B. (1990), Possible
roles of free radicals in alcoholic tissue damage. Free
Rad. Res. Comms. 9, 205–211.

Reemmer H., Kessler W., Einsele H., Hintze T., Toranzo
promotes oxygen-radical attack on proteins but not
on lipids. Drug Metab. Rev. 20, 219–232.

Rouach H., Ribiere C., Park M. K., Saffar C. and Nord-
mann R. (1987), Lipid peroxidation and brain mito-
chondrial damage induced by ethanol. Bioelectro-
chem. Bioenerg. 18, 211–217.

Uysal M., Kutalp G., Özdemirler G. and Aykac G.
(1989a). Ethanol-induced changes in lipid peroxi-
dation and glutathione content in rat brain. Drug
Alcohol Depend. 23, 227–230.

Uysal M., Özdemirler G., Kutalp G. and ÖZ H. (1989b),
Mitochondrial and microsomal lipid peroxidation in
the rat liver after acute acetaldehyde and ethanol
intoxication. J. Appl. Toxicol. 9, 155–158.

Zidenberg-Cherr S., Halsted C. H., Olin K., Reisenauer
A. M. and Keen C. L. (1990), The effect of chronic
alcohol ingestion on free radical defense in miniature