Sesquiterpene Hydrocarbons in Glandular Trichome Exudate of Rosa rugosa Leaves

Yasuyuki Hashidoko, Satoshi Tahara*, and Junya Mizutani
JRDC Plant Ecochemicals Project, Eniwa RBP Centre Bldg., Megumino Kita 3-Chome, Eniwa-shi, Hokkaido 060-13, Japan
* Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060, Japan

Rosa rugosa, Glandular Trichome Exudate, Sesquiterpene Hydrocarbons, Carotanoid, Acoranoid

From glandular trichome of Rosa rugosa, three major sesquiterpene hydrocarbons [acora-3(4),7(15)-diene, carota-4(5),11(12)-diene (isodaucene) and carota-1,4-diene], and two minor [daucene and acora-3(4),7(8)-diene] were identified. The presence of these carotadienes, which are possibly precursors of the corresponding C-14-oxygenated carotanoids, suggested that the formation of the carotane skeleton followed by the regio-specific oxygenation at C-14 occur in the biosynthesis of R. rugosa carotanoids.

Introduction

As reported in our previous paper [1], a carotane peroxide rugosal A and its related compounds, carota-1,4-dienaldehyde (7) and rugosic acid A, were found in the glandular trichome exudate of Rosa rugosa leaves in high concentration. The presence of rugosal A in the exudate suggested a defensive role of the glandular trichome, because of marked fungitoxicity of this sesquiterpene peroxide [2]. In addition to these major carotene sesquiterpenes, some other compounds, minor carotanes, non-carotane (bisabolane and acorane) sesquiterpenes and 2-phenoxychromones were also identified as constituents of the exudate. Since it was suggested that biosynthesis of the carotane sesquiterpenes is highly active in the tip cells of the glandular trichomes, precursor sesquiterpene hydrocarbons were expected to be present in the exudate. In the present investigation of less polar fractions, some sesquiterpene hydrocarbons were detected, and three major and two minor compounds were identified by means of spectroscopic analyses or direct comparison with chemically derivatized authentic compounds. The presence of these hydrocarbons may prove the occurrence of regio-specific oxygenation at C-14 of carotene sesquiterpene after formation of the bicyclic skeleton. The skeleton-specific oxygenation at the methyl carbon originated from C-13 of farnesyl pyrophosphate is discussed.

Results and Discussion

When leaf rinses were chromatographed in a silica gel column, a non-quenching spot less polar than carotane C-14-aldehydes [3, 4] and showing a reddish purple coloration with vanillin-sulphonic reagent was detected on TLC. By gas-liquid chromatography (GLC: Chrompac CP-Wax 52CB, capillary column 10 m), a column fraction eluted with chloroform (7.3 mg from methanol rinses of 200 g leaves, collected in May) was found to be a mixture of sesquiterpene hydrocarbons. More amounts of the sesquiterpene hydrocarbon mixture were obtained from methanol extracts from 6.0 kg of R. rugosa leaves, and each constituent in the fraction was separated by preparative TLC (Kieselgel 60 F254 impregnated with AgNO3, in n-hexane- Et2O = 25:1) with a guide of vanillin-sulphonic acid spray reagent.

Compound 1 appearing as the largest peak (32%, tR 7.8 min) showed an M+ at m/z 204.193 (C13H24, calc. 204.188) in GC mass spectrometry. The 1H NMR spectrum in CDC13 [an isopropyl (δH 0.94 and 0.85, each d, J = 7 Hz), an allylic methyl (δH 1.65, br. s), and an exomethylene groups (δH 4.76, dd, J = 2 and 2 Hz, and 4.72, d, J = 2 Hz)] and 13C NMR data, both similar to those of rosacorenone (2) previously isolated from R. rugosa leaves [4], were attributable to acora-3(4), 7(15)-diene. The relative configuration of 1

Verlag der Zeitschrift für Naturforschung, D-W-7400 Tübingen 0939–5075/92/0500–0353 $ 01.30/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
was expected to be the same with that of 2. Acora-3(4),7(15)-diene has already been reported from *Calea prunifolia* (Compositae) by Castro et al. [5], and its stereostructure was unambiguously elucidated by chemical derivatization from carotol (3) [6]. Because the spectroscopic data (([α]δ, 1H NMR and El mass spectrometry) of isolated 1 showed a good agreement with those of the derivative from 3, the expected stereostucture of 1 seemed reasonable.

Carota-4(5),11(12)-diene (isodaucene, 4) was isolated as the second major compound (11%, tR 9.0 min) in the mixture. In the 1H NMR spectrum, an isopropenyl (δH 1.74 for allylic methyl proton, and δH 4.78 and 4.70 for exomethylene protons), C-14 allylic methyl (δH 1.70, br. s) and C-15 bridgehead methyl (δH 0.81, s) groups were detected to formulate a carotane skeleton corresponding to that of isodaucenal (5) [4]. The C-10 methine proton resonated downfield at δH 2.90 (showing a cross peak with a methinic δC 50.3, in CH-COSY).

This characteristic downfield shift due to its allylic position was also observed in 5 having the C12/C13-double bond. It was expected that compound 4 has the same relative configuration with that of 5 whose relative stereostructure has already been determined by using NOE experiment [4]. The NOE experiments on 4 were therefore carried out. When compound 4 was irradiated at C-10 proton (δH 2.95), 6% NOE on C-1 proton (δH 1.77, br. dd, J = 11 Hz), cross peak with methinic δC 56.8) was observed to prove the cis-orientation being the same as that of 5.

A carotadiene being postulated to have the same planar structure as that of 4 but epimeric at C-10 has been reported by Zdero and Bohlmann from *Vernonia galpinii* (Compositae) [7]. Some spectroscopic data of this Compositae carotadiene are slightly different (e.g. separated C-9 and C-13 car-
Y. Hashidoko et al. • Sesquiterpenes from Rosa rugosa

Irradiated proton NOE-observed proton (NOE %)

<table>
<thead>
<tr>
<th>Irradiated proton</th>
<th>NOE-observed proton (NOE %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81 (C-15-H₃)</td>
<td>5.38 (C-5-H) 0.5</td>
</tr>
<tr>
<td>4.71 (C-12-Hb)</td>
<td>1</td>
</tr>
<tr>
<td>2.07 (C-6-Ha)</td>
<td>1</td>
</tr>
<tr>
<td>1.76 (C-9-Ha)</td>
<td>1.70 (C-13-H₃) 2</td>
</tr>
<tr>
<td>1.49 (C-8-Ha)</td>
<td>1.24 (C-2-Hb) 1</td>
</tr>
<tr>
<td>2.95 (C-10-H)</td>
<td>4.71 (C-12-Hb) 2</td>
</tr>
<tr>
<td>1.78 (C-1-H)</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 2. NOEs observed on compound 4 (500 MHz, in CDCl₃).

bons in ¹³C NMR overlapped each other in 4); however, most of the physicochemical data showed good agreement (e.g. ¹H NMR spectrum and ORD curve) with those of 4 (see Experimental and ref. 7). Accordingly, the carotadiene of V. galpinii-origin should have the same stereostructure as that of 4 due to the agreement in the ¹H NMR data, otherwise the epimeric compound may show some clearly distinguishable proton signals from those of 4 because of an olefinic bond in the iso-propenyl side chain attached to C-10. Indeed, stereostructure of the Compositae carotadiene is not reliable because it was only based on coupling constants (e.g. J₁ₐ-H₁₀-H = 10 Hz). From our observation on carotane sesquiterpenes [2–4], trans-coupling constant on a five-membered ring system is almost indistinguishable from that of cis-coupling. However, the revised structure for the carotadiene of V. galpinii-origin is still a matter of conjecture. The fact that acoradiene (1) and carotadiene (4 or its epimer) found in Compositae [5] also coexisted in R. rugosa indicated a close correlation between 1 (acorane) and 4 (carotane) from a biosynthetic viewpoints [8].

The third compound 6, showing a similar EIIMS fragmentation and ¹H NMR signals to those of carota-1,4-dienaldehyde (7) (e.g., m/z 161 and 105 in GC/MS, and two olefinic protons at δₙ 5.42 and 5.18, and bisallyl methylene protons at δₙ 2.90 and 2.75 in ¹H NMR), was identified to be carota-1,4-diene in spectroscopic comparison with that chemically derived from carotol acetate (8) by pyrolysis via cis-elimination of acetic acid [9]. The tR in GLC (8.2 min, Chrompac CP-Wax 52CB), GC mass spectrometry and ¹H NMR spectrum of the derivatized 6 showed good accordance with those of the isolate from R. rugosa. The stereostructure of natural and synthesized 6 both showing the same ORD curve (laevorotatory 650 nm–300 nm) was confirmed as 7R:10R [9]. Stereochemistry of 6 was thus found to be the same with that of 6 at the C-7 and C-10 chiral carbons [3, 10], suggesting that 6 was the precursor of 7. The presence of 7 may indicate that carota-1,4-diene skeleton is produced before the regio-specific oxygenation at C-14 in the main biosynthetic route to rugosal A. This is the first isolation of compound 6 as a naturally occurring sesquiterpene hydrocarbon.

Compound 9 (tR 4.9 min, the first peak) was identified as daucene in comparison of tR in GLC and GC mass spectrometry with authentic daucene prepared as described in Experimental, although the isolation of this compound was unsuccessful because of overlapping with a large amount of 1. Thus, daucene (9) was confirmed to be contained in the glandular trichome exudate of R. rugosa leaves. The presence of 9, originally found as a constituent of carot seed oil [11], was reasonable because the corresponding C-14-oxocarotane, daucenal (10) has already been isolated [4].

Compound 11 (tR 7.4 min) in the hydrocarbon fraction agreed in GC mass spectrometry (M⁺ 204.183, C₁₅H₂₄) with authentic acora-3(4), 7(8)-diene prepared from 8. The mass and NMR spectra showed good accordance also with the reported data of 11 which has been isolated from Vetteeria zizanoides (Gramineae) [12]. On the other hand, the constituent appearing as forth peak (tR 6.7 min) also showed an M⁺ at m/z 204.187, C₁₅H₂₄). This compound detected as a spot with R₀ 0.79 on AgNO₃-impregnated thin-layer plates was tentatively identified as 12, because ¹H NMR spectrum of the isolate well agreed with acora-2(3), 4(5)-diene reported from C. prunifolia [5]. However, stereochemistry of the isolate has not been characterized yet. The presence of these minor
acoradienes also supported the biosynthetic correlation between acoranoids and carotanoids of *R. rugosa* leaves.

The presence of these sesquiterpene hydrocarbons in the trichome exudate suggested that the cyclization of *cis, trans*-farnesyl pyrophosphate (FPP) actively occurred in the multicellular tip of the glandular trichomes. As we have reported in our earlier papers, carotanoid, bisabolanoid and acoranoid composed sesquiterpenes in the trichome exudate of *R. rugosa* [1-4, 10, 13]. Although these three sesquiterpenoids have the same precursor FPP, oxygenation and modification at the allylic methyl group (C-14 in carotane and acorane, and C-7 in bisalone; all originated from C-13 methyl group of FPP) are different in each skeleton. In the bisabolanoid, the C-7 is mostly oxygenated to a carboxylic carbon and further modified into a methoxy carbonyl carbon [13]. On the contrary, acoranoids of *R. rugosa* found so far all remained unmodified at the methyl group [4]. The carotanoids show several variations, methyl, hydroxymethyl, formyl, carboxylic and methoxy carbonyl carbons at C-14, and formyl and carboxylic forms are major in this sesquiterpenoid. In the sesquiterpene hydrocarbons from the trichome exudate, acoranoid I was the most major component, while bisabolan hydrocarbons in the fraction were only a trace amount in GLC analysis. This fact may suggest that bisabolanesomes and some carotanoids provide good substrates for enzymatic oxygenation at the allylic methyl group, while the enzyme system may be inactive on acoranoids. Formation of these sesquiterpenoids is shown in Scheme 1.

Experimental

Glandular trichome exudates (1.75 g, rinsed out by methanol) of *R. rugosa* leaves (200 g fr. wt.) were chromatographed in a silica gel column, and the fractions eluted with 10-20% EtOH/CHCl₃ (750 mg) were re-chromatographed as described in our previous paper [1]. Fraction FrB-3 showed a

![Scheme 1. Hypothetical formation of *R. rugosa* sesquiterpenoids from FPP.](image)
non-quenching and less polar spot than that of carota-1,4-dienaldehyde (7) on Kieselgel 60 F 254 plate (Rf 0.99 in n-hexane- EtOAc = 4:1; cf. 7; Rf 0.88). This spot showing a pinkish red with vanillin-sulphate reagent was obtained by prep. TLC as a mixture of sesquiterpene hydrocarbons (7.3 mg).

In GLC analyses (Chrompac CP-Wax 52 CB, 10 m × 0.25 mm i.d., 5 °C/min from 50 °C, initial time 1 min), 1 (tR 7.8 min, rel. int. 32%), 4 (9.0 min, 20%), 6 (8.2 min, 11%), 9 (4.9 min, 3%), 11 (7.4 min, 3%), 12 (6.7 min, 6%) and two unknown (5.2 min and 7 min; 5% and 8%, respectively) were detected from the trichome exudate. More amounts of the mixture (ca. 200 mg) were obtained from an earlier fraction of hexane solubles prepared from methanol extracts of 6.0 kg leaves. These sesquiterpene hydrocarbons were eluted with 2% EtOAc/ n-hexane from a silica gel column [3]. Each compound detected from the trichome exudate was then isolated by prep. TLC (Kieselgel 60 F 254 plates sprayed 5% AgNO 3 silica gel). Vanillin-sulphate: bluish purple, [α] D and 13 C NMR data were taken by the derivatized ones, respectively.

Compound 1 [acora-3(4), 8(15)-diene]. An oil. R f 0.38 (Et 2 O-n-hexane = 25:1 on 5% AgNO 3 silica gel). Vanillin-sulphate: bluish purple. [α] D 0 = 13° (c 0.15, in CHCl 3). HRMS: 204.184 (C 15 H 24 , calc. 204.188). GCMS m/z (rel. int.): 204 (M +, 11), 189 (3.9), 183 (8.7), 162 (13), 161 (100), 133 (15), 119 (51), 105 (82), 93 (32), 91 (32), 81 (82), 79 (28), 77 (17), 67 (16), 55 (28), 41 (41). 1 H NMR δ(270 MHz, CDCl 3): 5.42 (br. d, J = 7 Hz, 5-H), 5.18 (ddd, J = 6, 3 and 3 Hz, 2-H), 2.90 (br. d, J = 22 Hz, 3-Ha), 2.75 (br. dd, J = 22 and 6 Hz, 3-Hb), 2.42 (br. m, 10-H), 2.25 (br. d, J = 16 Hz, 6-Ha), 2.00 (dd, J = 16 and 7 Hz, 6-Hb), 1.86 (sept d, J = 7 and 6 Hz, 11-H), 1.69 (d, J = 0.5 Hz, 14-H 3), 1.03 (s, 15-H 3), 0.93 (d, J = 7 Hz, 12-H 3), 0.78 (d, J = 7 Hz, 13-H 3). 13 C NMR δ(68 MHz, CDCl 3, DEPT and CH-COSY): 150.2 (11-C), 133.6 (4-C), 122.1 (5-CH), 116.0 (2-CH), 52.5 (10-CH), 45.5 (7-C), 41.5 (8-CH 2), 40.9 (6-CH 2), 35.0 (3-CH 2), 29.2 (11-CH), 26.7 (14-CH 2), 23.7 (15-CH 3), 23.4 (9-CH 3), 21.8 (12-CH 3), 17.0 (13-CH 3). [α] D and 13 C NMR data were taken using derivatized one.

Compound 9 (daucene). An oil. R f 0.39 (Et 2 O-n-hexane = 25:1 on 5% AgNO 3 silica gel). Vanillin-sulphate: bluish purple. [α] D 0 = + 13° (c 0.16, in CHCl 3). HRMS: 204.188 (C 15 H 24 , calc. 204.188). GCMS m/z (rel. int.): 204 (M +, 19), 189 (34), 175 (4.5), 163 (8.5), 161 (13), 147 (20), 134 (29), 133 (28), 121 (58), 119 (29), 107 (47), 105 (26), 95 (23), 94 (34), 93 (100), 91 (29), 81 (32), 79 (45), 68 (94), 67 (43), 55 (32), 53 (29), 41 (59). 1 H NMR δ(270 MHz, CDCl 3): 5.38 (br. d, J = 9 Hz, 5-H), 4.78 (dd, J = 2 and 1 Hz, 12-Ha), 4.70 (dd, J = 2 and 1 Hz, 12-Hb), 2.95 (ddd, J = 11, 9 and 9 Hz, 10-H), 2.08 (dd, J = 15 and 9 Hz, 6-Ha), 1.74 (s, 14-H 3), 1.70 (d, J = 1 Hz, 13-H 2), 0.81 (s, 15-H 3). 13 C NMR δ(68 MHz, CDCl 3, DEPT and CH-COSY): 148.1 (11-C), 138.8 (4-C), 122.7 (5-CH), 112.7 (12-CH 2), 56.8 (1-CH), 50.4 (10-CH), 42.6 (7-C), 42.4 (6-CH 2), 42.0 (8-CH 2), 35.4 (3-CH 2), 28.3 (2-CH 2), 27.6 (14-CH 2), 23.1 (13-CH 3), 23.5 in C 6 D 6 , 23.1 (9-CH 3), 23.2 in C 6 D 6 , 19.3 (15-CH 3).
Δ(68 MHz, CDCl₃, DEPT and CH−COSY): 141.8 (1-C), 139.8 (10-C), 132.2 (4-C), 122.6 (5-CH), 49.5 (7-C), 40.3 (6-CH₂), 38.5 (8-CH₂), 33.5 (3-CH₃), 27.1 (9-CH₂), 26.4 (11-CH), 25.9 (14-CH₃), 23.5 (15-CH₃), 22.5 (2-CH₂), 21.9 (12-CH₂), 21.2 (13-CH₃).

Compound 11 [acoradi-3(4),7(8)-dien]. An oil. R₉ 0.87 (Et₂O-n-hexane = 25:1 on 5% AgNO₃ silica gel). Vanillin-sulphate: bluish purple. HRMS: 204.183 (C₁₂H₂₃, calc. 204.188). GCMS m/z (rel. int.): 204 (M⁺, 5.9), 189 (1.1), 161 (3.7), 136 (12), 121 (8.1), 105 (5.6), 95 (8.8), 94 (100), 93 (17), 91 (12), 79 (12), 77 (8.6), 65 (2.6), 55 (5.2), 40 (15).

Compound 12 [acoradi-2(3),4(5)-diene (tentative)]. An oil. R₉ 0.79 (Et₂O-n-hexane = 25:1 on 5% AgNO₃ silica gel). Vanillin-sulphate: reddish pink. HRMS: 204.187 (C₁₂H₂₃, calc. 204.188). GCMS m/z (rel. int.): 204 (M⁺, 12), 161 (14), 120 (15), 119 (100), 105 (81), 92 (16), 91 (14), 55 (13), 41 (16). ¹H NMR (270 MHz, CDCl₃): 5.63 (d, J = 10 Hz, 2-H), 5.26 (br. m, 5-H), 5.24 (d, J = 10 Hz, 3-H), 1.66 (br. s, 14-H₃), 0.96 (d, J = 7 Hz, 15-H₃), 0.86 (d, J = 7 Hz, 12-H₃), 0.83 (d, J = 7 Hz, 13-H₃).

Preparation of 1, 6, 9 and 11 from carotol

Carotol (3) was obtained from a carot seed oil supplied from Takasago Koryo Co. Compound 3 was roughly separated by prep. TLC (n-hexane-Et₂O−CH₃COOH = 500:10:1, R₉ 0.7). The crude 3 was acetylated by acetyl chloride in benzene at room temperature. The reaction mixture was partitioned between benzene and 5% NaHCO₃ solution. The reaction products were passed through a silica gel column for GLC analysis. The mixture was separated on AgNO₃-imregnated TL plates as described above. On the other hand, when 8 (28.9 mg) was treated with 3-TsOH (in EtOH/benzene, for 2h at room temperature), and the reaction mixture was partitioned between benzene and 5% NaHCO₃ solution, the sesquiterpene hydrocarbon mixture (16.4 mg, 75%) was obtained. Compound 9 (65% of the total sesquiterpene hydrocarbons) was predominantly obtained, while 11 (19%) and 1 (13%) were the minor products.
Acknowledgements

We are grateful to Dr. A. Sato, Takasago Koryo Co. for his kind providing of a carot seed oil, Mr. K. Watanabe and Mrs. E. Fukushi, GCMS and NMR Laboratory in the Faculty of Agriculture, Hokkaido University, for NOE, FIMS, GCMS and EI–HRMS analyses.