Fluorescence Induction Characteristics of Wild-Type and Herbicide-Resistant Strain of the Photosynthetic Bacterium *Rhodobacter capsulatus*

Gábor Horváth, Magdolna Droppa, and Ágnes Puskás
Institute of Plant Physiology, Biological Research Center, P.O. Box 521, H-6701 Szeged, Hungary

Z. Naturforsch. 45c, 452–454 (1990); received November 9, 1989

Fluorescence Induction, Electron Transport, Herbicide, Purple Bacteria, Photosynthesis

Fluorescence induction characteristics have been studied in wild-type and atrazine-resistant mutant of *Rhodobacter capsulatus*. Fluorescence induction was found to be a useful technique to monitor the altered electron transfer in the atrazine-resistant mutants as well as in the different membrane fractions of wild-type *R. capsulatus*. In both cases, the proportion of the fast rise of variable fluorescence was increased indicating the enhancement of Q\(_A\). In the mutant strain, the \(F_{0}\) value of triazine herbicide terbutryn was increased by 100-fold whereas the natural resistance of *R. capsulatus* against diuron was abolished by the mutation.

Introduction

Many herbicides, including s-triazines, inhibit the light reactions of photosynthesis by blocking electron transfer to quinones in the reaction centers of photosynthetic bacteria and higher plants [1–3]. Understanding the mechanism of herbicide action in bacterial reaction centers may help to explain the mode of action of these herbicides in plants. A promising approach for studying the mechanism of herbicide action involves the isolation and characterization of herbicide-resistant mutants of different photosynthetic bacterial species. The herbicide-resistant mutants isolated by various groups [4–9] showed decreased sensitivity to inhibition of electron transfer to Q\(_B\) by triazine herbicides and altered electron transfer properties. A simple and rapid method for determining herbicide inhibition of these electron transfer events is to measure the fluorescence induction kinetics of isolated photosynthetic membranes in higher plants or bacterial chromatophores [4, 10]. In this report, we have analyzed the fluorescence induction characteristics of wild-type and spontaneously occurring triazine-resistant mutant of *Rhodobacter* (*R.*) *capsulatus*.

Materials and Methods

The wild type *R. capsulatus*, strain B-10 was grown photosynthetically under anaerobic conditions on a succinate based medium as described previously [11]. The isolation of atrazine-resistant mutant strain designated AR 201 was achieved by transfer of wild type cells to a culture medium supplemented with 200 \(\mu\)M atrazine, followed by selection for spontaneous mutants. Chromatophores of the wild type and resistant strain were isolated with a French press and purified by differential centrifugation. Further resolution of subpopulations of chromatophores differing in sedimentation coefficient was performed according to the method described in [12, 13].

Fluorescence induction transients were measured according to the method of Paterson and Arntzen [10]. The assay medium contained 10 mM phosphate (pH 7.6), 0.1 mM phenazine methosulfate, 2 \(\mu\)M antimycin A, 0.2 mM diaminodurene and 1 mM Na-ascorbate. Bacteria or chromatophores were added to a final concentration of 10–15 \(\mu\)g bacteriochlorophyll per ml [4]. Before the measurements, both bacteria and chromatophores were incubated in the dark for 3 min at room temperature.

Results and Discussion

Fluorescence spectroscopy is a highly sensitive method for studying certain biophysical aspects of the electron transfer in the reaction center of both bacteria and higher plants [14–16]. Fig. 1 shows that both the whole cells of the wild type *R. capsulatus* and its isolated chromatophores exhibit typical fluorescence induction curves. The small initial rise from the non-variable level \(F_0\) to the intermediate plateau level \(F_{pl}\) is followed by a smaller but more pronounced fluorescence increase to \(F_{max}\) level. It was recently demonstrated in chloroplasts that the initial rise from \(F_0\) to \(F_{pl}\) was due to the...
of *R. capsulatus* also has an increased F_p level as compared to that of the wild type. This might indicate the enhancement of QA in AR 201. Addition of terbutryn (which completely blocks electron transfer between QA and QB) increases F_p nearly to the level of $F_{m,x}$. For the inhibition of electron transport, the resistant strain requires much higher concentration of herbicide than the wild type. The percentage of fluorescence rise occurring as a fast phase was calculated at several herbicide concentrations. The results obtained for atrazine, terbutryn and diuron are shown in Fig. 4. The I_{50} value (the herbicide concentration at which 50% inhibition can be observed) was 1 μm terbutryn in the wild type and 100 μm in the resistant strain AR 201. Similar increase of I_{50} value was observed when atrazine was used for titration. In agreement with earlier observations, diuron has no effect on fluorescence induction of wild type *R. capsulatus* [1, 2, 8]. The AR 201 mutants, however, showed an increased sensitivity against diuron. Similar increase of diuron sensitivity was recently described with a terbutryn-resistant mutants T 4 of *Rps. viridis* in which Tyr L222 was replaced by Phe. Since the increased sensitivity toward diuron makes our bacterial mutant specifically interesting for studying herbicide binding, the sequencing of the gene coding the L-subunit is in progress in our laboratory.