Enzymatic Acyloin Condensation of Acyclic Aldehydes*

Wolf-Rainer Abraham and Burghard Stumpf

GBF-Gesellschaft für Biotechnologische Forschung mbH, AG, Mikrobielle Stoffumwandlung, Mascheroder Weg 1, D-3300 Braunschweig, Bundesrepublik Deutschland

Z. Naturforsch. 42c, 559–566 (1987); received December 22, 1986

Biotransformation, Acyclic Terpenoids, Acyloin Condensation, Stereoselectivity

Corynespora cassicola DSM 62474 and Diplodia gossypina ATCC 10936 were found to cleave some acyclic terminal terpenoids and prolongate them later by addition of a C2-unit to afford 1,2-dihydroxy-propyl-compounds. Some acyclic terminal terpenoids and prolongate them later by addition of a C2-unit to afford 1,2-dihydroxy-propyl-compounds. The enymes involved in this reaction from both microorganisms displayed a strong stereoselectivity which is completely different in both strains. The stereochemical requirements of the substrates for both strains and the mechanism were elucidated by using closely related substrates. The absolute configuration of the diols were solved by correlation with compounds of known absolute configuration.

Introduction

In 1921 Neuberg and Hirsch [1] found that fermenting baker’s yeast prolongates benzaldehyde to (1R,2S)-1-phenyl-1,2-propanediol. This reaction was later intensively used for the synthesis of natural products with different aldehydes by Fuganti and co-workers [2]. In 1984 we reported on the acyloin condensation of citral [3] and activated acetate by strains of the genus Mucor. To date such a reaction has not been found for saturated aldehydes.

In a screen for strains capable of forming diols out of the 1-isobutenyl moiety of acyclic terpenoids [4] we found two organisms producing compounds with the 1,2-propanediol moiety. In this publication we will report on the substrate specificity of the strains, the configuration of these diols, and the mechanism of their formation.

Experimental

The fungi were precultivated for 72 h at 27 °C and 100 r.p.m. in 100 ml EM flasks containing 20 ml of the following medium: 1% of glucose, 1% of universalpeptone (Merck), 2% of malt extract and 0.3% of yeast extract. Then the substrate was added aseptically. After 16, 48, and 72 h samples were taken and analyzed as follows: To 1 ml of culture broth 0.2 ml ethylacetate was added and shaken for 2 min prior to centrifugation. 10 μl of the extract were developed on HPTLC plates with dichloromethane-acetone 7:3 [5]. The spots were detected by spraying with anisaldehyde-sulfuric acid in acetic acid and heating to 110 °C for 1 min. For biotransformation in preparative scale the microorganisms were precultivated as described above. After 72 h the cultures were passed into five 2 liter flasks filled with 400 ml of sterilized medium and incubated for another period of 48 h. After this time the substrate was added and samples were taken using the procedure described above.

Extraction and purification: Culture medium and mycelia were separated by filtration and both extracted three times with ethyl acetate. The solvent was evaporated and the crude extract separated on Si-60 columns with a n-hexane/ethyl acetate gradient (changing from 19:1 to 1:1). When necessary the collected fractions were further purified by preparative TLC.

Instruments used: NMR: The 1H NMR spectra were obtained at 400 MHz on a Bruker WM 400 spectrometer and the 13C NMR spectra at 75.5 MHz on a Bruker AM 300 spectrometer. If not stated otherwise CDCl3 was used as solvent and TMS as internal standard. IR: spectra were measured on a IR Spectral-Photometer 297, Perkin Elmer, in chloroform. Mass spectra were recorded on a AEI 902S mass spectrometer with 70 eV. Optical rotation: Perkin-Elmer Polarimeter 241, in chloroform.

Biotransformation of 1.8 g myrcene 1 with Diplodia gossypina ATCC 10936 yielded after 24 h 600 mg 2, 40 mg 3, and 9 mg 4. No erythro-nordiol was detected (amount ≤ 1 mg).

Threeo-8-normyrcen-6,7-diol (2S,3S-6-methyliden-7-octen-2,3-diol) (3): Colorless oil, 1H NMR: dd 5.26

* This work was presented in part at the 15th IUPAC International Symposium on the Chemistry of Natural Products, The Hague/NL, 1986.

Reprint requests to W.-R. Abraham.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341–0382/87/0500–0559 $ 01.30/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
(J = 17.6, 0.9 Hz) (1-H), dq 5.08 (J = 10.8, 1 Hz) (1'-H), dddd 6.37 (J = 17.6, 10.8, 0.5 Hz) (2-H), dddd 2.46 (J = 16, 9.9, 5.3, 1.3 Hz) (4-H), dddd 2.29 (J = 16, 9.8, 6.4, 1.1 Hz) (4'-H), dddd 1.69 (J = 13.8, 9.9, 6.4, 3.3 Hz) (5-H), dddd 1.59 (J = 13.8, 9.8, 9.4, 5.3 Hz) (5'-H), dddd 3.36 (J = 9.4, 6.3, 3.3 Hz) (6-H), dq 3.61 (J = 6.3, 6.3 Hz) (7-H), d 1.19 (J = 6.3) (8-H), d 5.03 (J = 0.5 Hz) (10-H), t 5.02 (J = 1.4 Hz) (10'-H).

\[\alpha = \frac{589 \text{nm} 578 \text{nm} 546 \text{nm} 436 \text{nm} 365 \text{nm}}{-15.3^\circ -16.1^\circ -18.0^\circ -30.2^\circ -44.3^\circ (c = 1.00).} \]

20 mg of 3 was solved in 1 ml dry acetone and 1 mg p-toluene sulfonic acid was added. The solution was allowed to stand for 2 h, then sodiumhydrogen-carbonate was added, the solvent evaporated, the residue washed with water, dried and chromatographed giving 20 mg of the 1,3-dioxolane of 3. \(^1^H\) NMR: dd 5.28 (J = 17, 1 Hz) (1-H), dd 5.09 (J = 11, 1 Hz) (1'-H), dd 6.40 (J = 17, 11 Hz) (2-H), dddd 2.46 (J = 16, 10, 5, 1 Hz) (4-H), dddd 2.28 (J = 16, 10, 6, 1 Hz) (4'-H), m 1.72 (5-H), dddd 3.58 (J = 9, 8 Hz) (6-H), dq 3.76 (J = 8, 6 Hz) (7-H), d 1.27 (J = 6 Hz) (8-H), s 5.06 (10-H), s 5.03 (10'-H), s 1.42 and s 1.40 (=C(CH\(_3\))\(_2\)).

Biotransformation of 1.8 g cis-nerolidol 15 with Diplodia gossypina ATCC 10936 or Corynespora cassiicola DSM 62474 yielded after 24 h no nordiols in amounts exceeding 2 mg.

Biotransformation of 375 mg 16 with Diplodia gossypina ATCC 10936 yielded after 116 h 100 mg 16, 45 mg 19, 20 mg 17, 20 mg 18, and 14 mg 4,8-dimethyl-8-hydroxy-4,2,9-decadienic acid.

Three-10,11-dihydroxy-cis-12-nornerolenol (17): Epimeric at C-3. \(^1^H\) NMR: d 5.04 + 5.05 (J = 10 Hz) (1-H), d 5.21 (J = 17 Hz) (1'-H), dd 5.98 + 5.91 (J = 17, 10 Hz) (2-H), m 1.4–1.6 (4-H, 9-H), m 2.1 (5-H), t 5.18 (J = 7 Hz) (6-H), m 2.25 (8-H), m 2.1 (8'-H), dddd 3.28 (J = 9, 7, 3 Hz) (10-H), dq 3.60 (J = 7, 7 Hz) (11-H), d 1.18 (J = 7 Hz) (12-H), s(br) 1.68 (14-H), s 1.28 (15-H). MS (m/e): 224.1773 (M\(^+\)) (224.1776 calc. for C\(_{14}\)H\(_{20}\)O\(_2\)).

\[\alpha = \frac{589 \text{nm} 578 \text{nm} 546 \text{nm} 436 \text{nm}}{+5.2^\circ +5.4^\circ +6.2^\circ +9.9^\circ (c = 1.00).} \]

Biotransformation of 4.5 g S-citronellene 25 with Diplodia gossypina ATCC 10936 yielded after 24 h 1160 mg 26, 200 mg 27, 80 mg 28, and 20 mg 29. 3S,6S,7S-Threeo-6,7-dihydroxy-8-norcitroneleenl (27): Colorless oil. \(^1^H\) NMR: dd 4.94 (J = 17, 1 Hz) (1-H), dd 4.90 (J = 10.2, 1 Hz) (1'-H), dddd 5.66 (J = 17, 10.2, 7.5 Hz) (2-H), m 2.10 (3-H), m 1.52 (4-H), m 1.35 (4'-H), m 1.52 (5-H), m 1.35 (5'-H), m 3.30 (6-H), dq 3.57 (J = 6.3, 6.3 Hz) (7-H), d 1.19 (J = 6.3 Hz) (8-H), d 1.00 (J = 6.5 Hz) (10-H). MS (m/e): 158.1308 (M\(^+\))(158.1307 calc. for C\(_9\)H\(_{16}\)O\(_2\)).

\[\alpha = \frac{589 \text{nm} 578 \text{nm} 546 \text{nm} 436 \text{nm}}{-9.9^\circ -10.3^\circ -11.5^\circ -18.1^\circ -26.0^\circ (c = 1.00).} \]

Biotransformation of 1.45 g 38 with Diplodia gossypina ATCC 10936 yielded after 156 h 22 mg 38, 185 mg 39, 80 mg 40, 32 mg 41, and 5 mg 53. 3R,6S-6-hydroxy-7-oxo-8-norcitroneleenl (53): \(^1^H\) NMR: dddd 4.97 (J = 17.2, 1.8, 1.2 Hz) (1-H), dddd 4.94 (J = 10.5, 1.8, 1 Hz) (1'-H), dddd 5.68 (J = 17.2, 10.5, 7.8 Hz) (2-H), m 2.12 (3-H), m 1.5–1.3 (4- and 5-H), m 3.57 (6-H), m 3.76 (7-H), d 1.14 (J = 7 Hz), (8-H), d 1.00 (J = 7 Hz) (10-H).

\[\alpha = \frac{589 \text{nm} 578 \text{nm} 546 \text{nm} 436 \text{nm}}{-2.3^\circ -2.4^\circ -2.7^\circ -3.9^\circ (c = 1.00).} \]

Biotransformation of 1.8 g of a 1:1 mixture of 2,6-dimethyl-1,5-heptadiene 30 and 2,6-dimethyl-2,5-heptadiene 48 with Diplodia gossypina ATCC 10936 yielded after 24 h 210 mg 31, 60 mg 32, 50 mg 2,2-dimethyl-3-hydroxy-5-(2'-hydroxy-2'-propyl)-tetrachydrofuran, and 30 mg 3S-2,6-dimethyl-5-hepten-2,3-diol. The erythro-nordiol was not detected (amount ≤ 1 mg).
Biotransformation of 1.9 g of a mixture of stereoisomers of farnesol 10 with Corynespora cassicola DSM 62474 yielded after 48 h 800 mg of the stereoisomers of 11, 50 mg 14, 50 mg 14a, 25 mg 12, 25 mg 12a, 25 mg 13, 25 mg 13a, 17 mg 2E,6E-10,11-epoxy-farnesol, and 15 mg 2Z,6Z-10,11-epoxy-farnesol.

Threeo-10,11-dihydroxy-2E,6E-12-norfarnesol (12): Not completely free of 12a. 1H NMR: d 4.12 (J = 7 Hz) (1-H), t 5.34 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.11 (J = 7 Hz) (6-H), m 3.28 (10-H), m 3.56 (11-H), d 1.16 (J = 7 Hz) (12-H), s(br) 1.60 (14-H), s(br) 1.64 (15-H), αD +0.8° (c = 1.00).

12 reacted with acidic acetone to the 1,3-dioxolane: 1H NMR: d 4.13 (J = 7 Hz) (1-H), t 5.38 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.12 (J = 7 Hz) (6-H), m 3.49 (10-H), m 3.70 (11-H), d 1.25 (J = 7 Hz) (12-H), s(br) 1.61 (14-H), s(br) 1.67 (15-H), s 1.39 and s 1.38 (=C(CH3)2).

Threeo-10,11-dihydroxy-2Z,6E-12-norfarnesol (12a): Not completely free of 12a. 1H NMR: d 4.08 (J = 7 Hz) (1-H), t 5.38 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.11 (J = 7 Hz) (6-H), m 3.30 (10-H), m 3.56 (11-H), d 1.16 (J = 7 Hz) (12-H), s(br) 1.60 (14-H), s(br) 1.72 (15-H).

Erythro-10,11-dihydroxy-2E,6E-12-norfarnesol (13): Not completely free of 13a. 1H NMR: d 4.12 (J = 7 Hz) (1-H), t 5.34 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.11 (J = 7 Hz) (6-H), m 3.56 (10-H), m 3.72 (11-H), d 1.13 (J = 6 Hz) (12-H), s(br) 1.60 (14-H), s(br) 1.64 (15-H).

13 reacted with acidic acetone to the 1,3-dioxolane: 1H NMR: d 4.13 (J = 7 Hz) (1-H), t 5.38 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.12 (J = 7 Hz) (6-H), ddd 3.98 (J = 10, 5, 5 Hz) (10-H), dq 4.21 (J = 6, 6 Hz) (11-H), t 1.15 (J = 6 Hz) (12-H), s(br) 1.61 (14-H), s(br) 1.67 (15-H), s 1.44 and s 1.33 (=C(CH3)2). MS (m/e): 282.2193 (M+) 282.2195 calc. for C13H23O3.

\[
\begin{align*}
\alpha &= \frac{589 \text{ nm} - 578 \text{ nm}}{546 \text{ nm} - 365 \text{ nm}} \times 3.75^\circ + 3.75^\circ + 4.4^\circ + 5.2^\circ + 6.0^\circ \\
&= 0.26.
\end{align*}
\]

Erythro-10,11-dihydroxy-2Z,6E-12-norfarnesol (13a): Not completely free of 13a. 1H NMR: d 4.09 (J = 7 Hz) (1-H), t 5.39 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.14 (J = 7 Hz) (6-H), m 3.56 (10-H), m 3.75 (11-H), d 1.14 (J = 7 Hz) (12-H), s(br) 1.60 (14-H), s(br) 1.72 (15-H).

13a reacted with acidic acetone to the 1,3-dioxolane: 1H NMR: d 4.09 (J = 7 Hz) (1-H), t 5.42 (J = 7 Hz) (2-H), m 2.1 (4-H, 5-H, 8-H), t 5.13 (J = 7 Hz) (6-H), ddd 3.98 (J = 10, 5, 5 Hz) (10-H), dq 4.22 (J = 6, 6 Hz) (11-H), d 1.16 (J = 6 Hz) (12-H), s(br) 1.61 (14-H), s(br) 1.72 (15-H), s 1.44 and s 1.33 (=C(CH3)2).

Biotransformation of 500 mg of 16 with Corynespora cassicola DSM 62474 yielded after 48 h 347 mg 16, 40 mg 17, 31 mg 18, and 12 mg 19.

Biotransformation of 1.9 g of geranylacetone 20 with Corynespora cassicola DSM 62474 yielded after 24 h 42 mg 20, 630 mg 21, 240 mg alcohol of 21, 60 mg 24, 30 mg alcohol of 24, 8 mg 22, 8 mg 23, 18 mg 7,11-dihydroxy-geranylacetone, 8 mg 7-hydroxy-geranylacetone, and nine other minor products.

Threeo-9,10-dihydroxy-11-norterpenylcetol (22): 1H NMR: d 1.20 (J = 7 Hz) (1-H), m 3.79 (2-H), m 2.1 (4-H), t 5.20 (J = 7 Hz) (5-H), m 2.1 (7-H), m 3.31 (9-H), dq 3.59 (J = 6 Hz) (10-H), d 1.20 (J = 6 Hz) (11-H), s(br) 1.64 (13-H).

22 reacted with acidic acetone to the corresponding 1,3-dioxolane: 1H NMR: d 1.19 (J = 7 Hz) (1-H), ddq 3.80 (J = 7, 7, 7 Hz) (2-H), t 5.17 (J = 7 Hz) (5-H), ddd 3.49 (J = 10, 7, 6 Hz) (9-H), dq 3.71 (J = 7, 6 Hz) (10-H), d 1.25 (J = 6 Hz) (11-H), s(br) 1.63 (13-H), s 1.39 and s 1.38 (=C(CH3)2).

Erythro-9,10-dihydroxy-11-norterpenylacetol (23): Isolated only as 2,2-dimethyl-1,3-dioxolane: 1H NMR: d 1.19 (J = 7 Hz) (1-H), m 3.80 (2-H), m 5.18 (5-H), m 3.99 (9-H), m 4.22 (10-H), d 1.15 (J = 6 Hz) (11-H), s(br) 1.63 (13-H), s 1.44 and s 1.33 (=C(CH3)2).

Results

After a screen of microorganisms capable of forming the diol by the attack of the 1-isobutenyl moiety of acyclic terpenoids two strains were found to produce additional norterpenes. The biotransformation of myrcene (1) with Diplodia gossypina ATCC 10936 afforded 6,7-dihydroxy-myrcene (2), 4-methyliden-5-hexenol-1 (4) and 8-nor-6,7-dihydroxy-myrcene (3). Corynespora cassicola DSM 62474 afforded also the corresponding nordiols 8 and 9 with trans-nerolidol (5) lacking here the 12-methyl group.

The configuration of the dihydroxy-norterpenoids was solved by reacting them with acetone and catalytic amounts of acid to form the 5-substituted 2,2,4-trimethyl-1,3-dioxolane. In these compounds the conformation of the asymmetric centers of the vicinal diol is fixed and NOE experiments could be per-
Fig. 1. Biotransformation of myrcene (1) with Diplodia gossypina ATCC 10936 and trans-nerolidol (5) with Corynespora cassiicola DSM 62474.

Fig. 2. Substrates and their biotransformation products.
formed. Irradiation at the 4-methyl group gave in the NOE experiment of the 1,3-dioxolane derivative of 3 an enhancement at 5-H so that the diol must have the threo-configuration. In the case of the 1,3-dioxolane of the nordiol (9) of trans-nerolidol an enhancement of the methylene-proton adjacent to C-5 was observed requiring the erythro-configuration of the diol. Threo- and erythro-diols can easily be discerned by their 13C NMR resonances. The range of resonances of the methyl group adjacent to the diol part depends on the diol configuration. The range of resonances of these methyl groups is shifted to higher fields in the erythro-diols while the vicinal carbon is deshielded in relation to that one of the threo-diols (Table I).

These diols were further correlated with 2,3-diols of known absolute configuration so the absolute configuration of the nordiols formed by Diplodia gossypina ATCC 10936 could be deduced. The threo-nordiol (3) gave $\alpha_\theta = -15.3^\circ$ while 2,5,3S-octan-2,3-diol [6] has $\alpha_\theta = -18.5^\circ$. It is noteworthy that the absolute configuration of the diol 27 and 39 is independent from the configuration at C-3. This correlation was very uncertain with the nordiols formed by Corynespora cassicola DSM 62474 because the strength of the optical rotation of these compounds were rather low. The data we obtained however pointed to the same absolute configuration as the nordiols of Diplodia gossypina.

Both strains revealed a pronounced substrate specificity. Diplodia gossypina ATCC 10936 afforded with myrcene 1, 3-citronellene (25), 2,6-dimethyl-1,5-heptadiene (30), nerylacetone (33), and R-citronellene (37) the norcompounds, whereas trans-

Table Ia. 13C NMR data of 3, 23, 24, 27, 32, 33 and 47 (75.5 MHz, CDCl$_3$, TMS as internal standard).

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>23</th>
<th>24</th>
<th>27</th>
<th>32</th>
<th>33</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>t 115.9a</td>
<td>t 112.8</td>
<td>t 112.9</td>
<td>q 22.4</td>
<td>t 113.0</td>
<td>t 113.0</td>
<td>t 113.2</td>
</tr>
<tr>
<td>C-2</td>
<td>d 138.7</td>
<td>d 144.5</td>
<td>d 144.4</td>
<td>s 145.7</td>
<td>d 144.3</td>
<td>d 144.3</td>
<td>d 114.1</td>
</tr>
<tr>
<td>C-3</td>
<td>s 146.0</td>
<td>d 37.9</td>
<td>d 38.0</td>
<td>t 33.9</td>
<td>d 37.8</td>
<td>d 37.8</td>
<td>d 37.8</td>
</tr>
<tr>
<td>C-4</td>
<td>t 31.8</td>
<td>t 32.5</td>
<td>t 33.0</td>
<td>t 31.3</td>
<td>t 32.3</td>
<td>t 32.8</td>
<td>t 31.6</td>
</tr>
<tr>
<td>C-5</td>
<td>t 27.4</td>
<td>t 31.1</td>
<td>t 29.6</td>
<td>d 76.0</td>
<td>t 31.0</td>
<td>t 29.4</td>
<td>t 31.4</td>
</tr>
<tr>
<td>C-6</td>
<td>d 75.9</td>
<td>d 76.5</td>
<td>d 75.3</td>
<td>d 70.9</td>
<td>d 76.2</td>
<td>d 75.0</td>
<td>d 77.1</td>
</tr>
<tr>
<td>C-7</td>
<td>d 70.8</td>
<td>d 70.9</td>
<td>d 70.5</td>
<td>q 19.6</td>
<td>d 70.9</td>
<td>d 70.5</td>
<td>s 209.8</td>
</tr>
<tr>
<td>C-8</td>
<td>q 19.5</td>
<td>q 19.5</td>
<td>q 16.6</td>
<td>–</td>
<td>q 19.6</td>
<td>q 16.7</td>
<td>q 25.2</td>
</tr>
<tr>
<td>C-9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>t 110.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C-10</td>
<td>t 113.5a</td>
<td>q 20.1</td>
<td>q 20.2</td>
<td>–</td>
<td>q 20.5</td>
<td>q 20.3</td>
<td>q 20.1</td>
</tr>
</tbody>
</table>

a Assignments may be interchanged.
Table 1b. 13C NMR data of 8, 9, 11–12a, 15, and 16 (75.5 MHz, CDCl$_3$, TMS as internal standard).

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>11a</th>
<th>12</th>
<th>12a</th>
<th>15a</th>
<th>16a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>t</td>
<td>111.8</td>
<td>t</td>
<td>111.8</td>
<td>t</td>
<td>59.2</td>
<td>t</td>
<td>58.9</td>
</tr>
<tr>
<td>C-2</td>
<td>d</td>
<td>145.1</td>
<td>d</td>
<td>145.1</td>
<td>d</td>
<td>124.1</td>
<td>d</td>
<td>124.4</td>
</tr>
<tr>
<td>C-3</td>
<td>s</td>
<td>73.5</td>
<td>s</td>
<td>73.5</td>
<td>s</td>
<td>138.5</td>
<td>s</td>
<td>139.2</td>
</tr>
<tr>
<td>C-4</td>
<td>t</td>
<td>42.1</td>
<td>t</td>
<td>42.1</td>
<td>t</td>
<td>39.2</td>
<td>t</td>
<td>31.1</td>
</tr>
<tr>
<td>C-5</td>
<td>t</td>
<td>22.8</td>
<td>t</td>
<td>22.8</td>
<td>t</td>
<td>25.6</td>
<td>t</td>
<td>26.0</td>
</tr>
<tr>
<td>C-6</td>
<td>d</td>
<td>125.1</td>
<td>d</td>
<td>125.1</td>
<td>d</td>
<td>124.8</td>
<td>d</td>
<td>124.9</td>
</tr>
<tr>
<td>C-7</td>
<td>s</td>
<td>135.3</td>
<td>s</td>
<td>135.3</td>
<td>s</td>
<td>134.9</td>
<td>s</td>
<td>135.7</td>
</tr>
<tr>
<td>C-8</td>
<td>t</td>
<td>35.8</td>
<td>t</td>
<td>36.2</td>
<td>t</td>
<td>35.9</td>
<td>t</td>
<td>35.5</td>
</tr>
<tr>
<td>C-9</td>
<td>t</td>
<td>31.5</td>
<td>t</td>
<td>29.8</td>
<td>t</td>
<td>30.9</td>
<td>t</td>
<td>31.6</td>
</tr>
<tr>
<td>C-10</td>
<td>d</td>
<td>76.0</td>
<td>d</td>
<td>74.8</td>
<td>d</td>
<td>75.5</td>
<td>d</td>
<td>75.3</td>
</tr>
<tr>
<td>C-11</td>
<td>d</td>
<td>70.9</td>
<td>d</td>
<td>70.5</td>
<td>d</td>
<td>70.9</td>
<td>d</td>
<td>70.8</td>
</tr>
<tr>
<td>C-12</td>
<td>q</td>
<td>19.5</td>
<td>q</td>
<td>16.9</td>
<td>q</td>
<td>19.4</td>
<td>q</td>
<td>19.4</td>
</tr>
<tr>
<td>C-14</td>
<td>q</td>
<td>16.0</td>
<td>q</td>
<td>16.0</td>
<td>q</td>
<td>15.8</td>
<td>q</td>
<td>15.8</td>
</tr>
<tr>
<td>C-15</td>
<td>q</td>
<td>28.0</td>
<td>q</td>
<td>27.9</td>
<td>q</td>
<td>15.8</td>
<td>q</td>
<td>23.0</td>
</tr>
</tbody>
</table>

* Compounds epimeric at C-3.

nerolidol (5), geranylacetone (20), linalool (44), alloocimene (47), 2,6-dimethyl-2,5-heptadiene (48), 2,5-dimethyl-2,4-hexadiene (49), and citronellol (50) all formed the diol at the 1-isobutenyl moiety but no norcompounds. This implies that this strain requires two methylene groups vicinal to the double bond and an additional double bond for norcompounds. An oxygen function in this part of the molecule is not tolerated.

Corynespora cassiicola DSM 62474 revealed almost opposite selectivity compared to *Diplodia gossypina*. *Corynespora cassiicola* DSM 62474 formed the norcompounds with trans-nerolidol (5), 2E,6E- and 2Z,6E-farnesol (10) and geranylacetone (20), while the 6Z-farnesols, myrcene (1), citronellene (25) and (37), nerylacetone (33), geraniol (43), linalool (44), nerol (45), and 2,6-dimethyl-5-heptenol-2 (46) yielded the diols of the 1-isobutenyl moiety but not the norcompounds. Both strains formed the nordiols of cis-nerolidol (15) but in both cases these compounds were only formed if the diol (16) was used as substrate, so the yields were very low. From these results it can be deduced that this strain requires a geranyl moiety which must have an additional methylene group. While the double bond in the central part of the molecule has to have here the E-configuration to give the norcompounds, a Z-configuration is essential for the same reaction with *Diplodia gossypina* ATCC 10936.

During the course of the fermentation the diol occurred at first in the culture broth followed by the nordiols and the trinoralcohols so the formation of norcompounds out of the diols seemed to be very likely. Extended fermentation of the diol (38) afforded indeed the nordiols (39) and (40), the trinor-alcohol (41) and the ketol (53). This ketol is assumed to be the primary product of the prolongation of the intermediary formed aldehyde (52) which originates obviously from the diol cleavage of (38). Despite of the different selectivity of the two strains a common mechanism for the formation of nordiols can be proposed: First the double bond is epoxidated, then the epoxide hydrolyzed to the diol which is cleaved to the aldehyde and acetone. The aldehyde can either be reduced to the alcohol giving the trinorcompound or prolongated to the ketol. The final step in the formation of nordiols is the reduction of this ketol in both strains. While this reduction leads preferably to the S-alcohol with *Diplodia gossypina* ATCC 10936, S- and R-alcohol are formed in equal amounts with *Corynespora cassiicola* DSM 62474. Besides the different substrate selectivity this behavior is the main difference of the biotransformation of these substances between these two microorganisms.

Corynespora cassiicola DSM 62474 afforded always a ratio of threo- and erythro-nordiols which was close to 1:1. *Diplodia gossypina* ATCC 10936 afforded preferentially the three-nordiols. Here the ratio varies from 2.5:1 (S-citronellene) to $\geq 60:1$ (2,6-dimethyl-1,5-heptadien) depending on fermentation conditions and substrate. Using the diols as substrates to produce the nordiols the yields increase whereas the ratio decreases to about 1:1 to 7:1. The reasons are still not very well understood.
but reduction of ketones with yeasts showed a strong dependence of optical purity of the alcohol from the concentration of substrate and glucose [7]. It seems to be plausible to apply these results for the reduction of the intermediary formed ketol.

Acknowledgement

We thank Mrs. H. Schwab-Hanisch for her assistance with the separation of the compounds and Miss M. Mull and Miss U. Kobbe for their microbiological assistance.