Reactions of Substituted Arenediazonium Chlorides with Methylamine-Formaldehyde Premix Revisited: Reactivity and Transformations of Methylolamine Intermediates and Their Biological Significance

George F. Kolar and Michael Schendzielorz

Institut für Toxikologie und Chemotherapie, Deutsches Krebsforschungszentrum, 6900 Heidelberg, Bundesrepublik Deutschland

Z. Naturforsch. 42c, 41–46 (1987); received October 3, 1986

Dedicated to Professor Erich Hecker on the occasion of his 60th birthday

Arenediazonium Iones, M ethylolamine Intermediates

Modulation of the N-azo coupling between ring-substituted arenediazonium chlorides and premixed methylamine-formaldehyde leads not only to 1-aryl-3-hydroxymethyl-3-methyltriazenes and their dimers, but also to unexpected cyclic and complex products. The syntheses comprise reactions with arenediazonium chlorides bearing both –M and +M substituents at para and ortho/para positions of the phenyl ring. One of the major constituents isolated from a mixture of products is the O-acetate of 3-hydroxymethyl-3-methyl-1-(2,4,6-trichlorophenyl)triazen. This product was obtained from the reaction of 2,4,6-trichlorobenzenediazonium chloride and methylamine-formaldehyde mixture which was then stabilized by acetylation.

The structures of the isolated products could be derived from reactive methylolamines and electrophilic intermediates that possibly occur in vivo and thereby offer a plausible mechanistic explanation for the carcinogenic and tumour-inhibitory activity associated with the open-chain triazene compounds in the living cell.

3-Alkyl-1-aryl-3-(1-hydroxyalkyl)triazenes (Fig. 1) are metabolic intermediates in the oxidative cytochrome P-450 mediated activation of 1-aryl-3,3-dimethyltriazenes (Fig. 2) which have been known as an important class of tumour-inhibitory agents [1, 2] and indirect carcinogens [3, 4]. N-Hydroxymethyl-N-methyltriazenes was proposed by Magee and associates in mid fifties as an unstable intermediate of diazomethane in the enzymatic activation of l-aryl-3,3-dimethyltriazenes in the living cell.

Fig. 1. 1-Aryl-3-hydroxymethyl-3-methyltriazenes.

Fig. 2. 1-Aryl-3,3-dimethyltriazenes.

Reprint requests to Dr. G. F. Kolar.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341–0382/87/0100–0041 $ 01.30/0
methylamine-formaldehyde. The method was modified by Julliard et al. [13] who used solid 4-X-arenediazonium fluoroborates, instead of diazonium chloride solutions. Cheng et al. [14] critically examined the products of this reaction by 1H NMR spectroscopy and found that the described compounds were bis[(3-aryl-1-methyl-2-triazen-1-yl)-methyl]methyamines, rather than 1-aryl-3-hydroxymethyl-3-methyltriazenes. The results were confirmed by Lafrance et al. [15].

The structures and proportions of products derived from coupling of arenediazonium ions with methylamine-formaldehyde mixtures depend mainly on substituents in the phenyl ring, ratio of reactants, temperature, and pH. We report the synthesis of several classes novel compounds, including 3,7-bis(4-X-aryl)-1,5,3,7-dioxadiazocanes and products derived from 2,4,6-trichlorobenzenediazonium ion. We have identified N,N-bis[(3-(4-tolyl)-1-methyl-2-triazen-1-yl)methyl]methyamine which we believe is the first dimeric compound bearing an electron-releasing methyl substituent at the 4-position of the phenyl ring.

Materials and Methods

General

All aromatic amines, reagents and other materials were of the purest grades available.

Melting points (m.p.): Tottoli capillary melting point apparatus (uncorrected).

Elemental analyses were performed by the Analytical Laboratory of the Max-Planck-Institute of Medical Research, Heidelberg.

UV spectra were measured on a Hitachi U-3200 spectrometer and IR (ν [cm$^{-1}$]) on a Perkin Elmer 580B instrument. 1H and 13C NMR (δ [ppm] relative to internal TMS; in CDCl$_3$ unless otherwise noted; J [Hz] = apparent coupling constant): HX90, WH90 or Bruker AM500 spectrometer at 70 eV. Mass spectra were determined at 100 eV with a Finnigan MAT711 mass spectrometer, Bremen, FRG.

All spectra were measured at the Spectroscopic Unit, Institute of Biochemistry, German Cancer Research Center, Heidelberg, and may be retrieved from their data bank.

Reagents, thin-layer and column chromatography

N-Ethyl-1-naphthylamine (Fluka, Buchs, Switzerland) NEN reagent was prepared by dissolving 700 mg of N-ethyl-1-naphthylamine hydrochloride in ethanol (285 ml) and making up the solution to 350 ml with conc. hydrochloric acid.

Precoated silica gel plates F-254 (Merck AG, Darmstadt, FRG) were used for thin-layer chromatography in the following solvents: (1) toluene; (2) toluene/acetone (3:1 v/v).

Silica gel (0.05–0.2 mm) and neutral or basic alumina (Merck AG, Darmstadt) were used as solid supports.

Synthetic methods

3,7-Bis(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocane

4-Trifluoromethylaniline (4.03 g, 0.025 mol) in HCl (37%, 10 ml) and water (20 ml) was diazotized with NaNO$_2$ (2.76 g, 0.04 mol) in water (6 ml) and the clarified diazonium solution was coupled over 20 min with a premixed solution of methylamine (9 ml, 40%) and formaldehyde (40 ml, 37%), cooled to −5 °C. After the addition had been completed, the reactants (pH 4–5) were mechanically stirred for 30 min and adjusted to pH 1 with HCl; stirring was continued for another 15 min after which the reaction mixture was placed in a refrigerator (4 °C) overnight. The separated solid was filtered, washed with water and the dried product crystallized from benzene (m.p. 201; yield 0.9 g, 18%).

3-Hydroxymethyl-3-methyl-1-(2,4,6-trichlorophenyl)-triazene derivatives

2,4,6-Trichloroaniline (9.82 g, 0.05 mol) in HCl (37%, 20 ml) and H$_2$O (40 ml) was diazotized with NaNO$_2$ (4.8 g, 0.07 mol). The cooled 2,4,6-chlorobenzenediazonium solution was coupled (30 min) with a deeply cooled (−10 °C) mixture of formaldehyde (37%, 80 ml) and methylamine (40%, 18 ml). The reaction mixture was adjusted to pH 7 with sodium bicarbonate, and allowed to stand overnight. The aqueous phase was decanted and the separated viscous product was dissolved in ether (100 ml), the solution washed with water, and dried over sodium sulphate. Evaporation of the solvent left a yellow residue (5 g) which was chromatographed on a silica gel column (2.5 × 25 cm), eluted with diisopropyl ether. After collecting 10 ml of blank effluent, the product was eluted with 60 ml of the solvent; the residue was crystallized from benzene: n-hexane (1:3). The yield of 3,11-dimethyl-1,7,13-tris-
(2,4,6-trichlorophenyl)-5,9-dioxa-1,2,3,7,11,12,13-heptazatridecan-1,12-diene, m.p. 132 °C, was 0.35 g (7%); (Compound A).

A portion of the yellow product (2 g) was taken up in diethyl ether (8 ml) and the solution cooled to −10 °C. Acetic anhydride (1.6 g, 0.015 mol) was diluted with diethyl ether (7 ml) and added over 5 min. The reaction was stirred for an hour and allowed to stand overnight. The solvent was removed in vacuo and the residue chromatographed on a 2 × 20 cm silica gel column, packed in diisopropyl ether. The development was continued with tetrahydrofuran which eluted the product. Evaporation of the solvent left a residue which was crystallized from diisopropyl ether: n-hexane (1:2); m.p. 81 °C (0.78 g; 39%); (Compound B).

Another portion of crude product (2 g) was taken up in pyridine (5 ml), cooled to 0 °C, and acetylated by a gradual addition of acetic anhydride (1.6 g, 0.015 mol). The reaction was stirred for 30 min with cooling and for an additional hour at room temperature; thereafter the mixture was poured over ice (20 g), and the acetylated products were extracted with ether (2 × 15 ml). The constituents were chromatographed on a column of silica gel (1 × 20 cm) in diisopropyl ether. After collecting 40 ml of the blank effluent, ([3-(2,4,6-trichlorophenyl)-1-methyl-2-triazene-1-yl]methyl) acetate was eluted with 150 ml of the solvent. The residue was crystallized from n-hexane; m.p. 78 °C (0.54 g, 28%); (Compound C).

Further elution of the column with tetrahydrofuran removed N,N-bis={[3-(4-tolyl)-1-methyl-2-triazene-1-yl]methyl}methylamine; [3,5,7-trimethyl-1,9-bis(4-methylphenyl)-1,2,3,5,7,8,9-heptazanona-1,8-diene]

N,N-Bis{[3-(4-tolyl)-1-methyl-2-triazene-1-yl]methyl}methylamine; [3,5,7-trimethyl-1,9-bis(4-methylphenyl)-1,2,3,5,7,8,9-heptazanona-1,8-diene]

4-Toluidine (5.35 g, 0.05 mol) in HCl (37%, 15 ml) and water (15 ml) was diazotized with NaNO₂ (4.8 g, 0.07 mol) in water (10 ml) with cooling in an ice bath. The clarified diazonium solution (charcoal) was treated with a pinch of urea to destroy unreacted nitrite. The diazonium solution was slowly added (30 min) to a mixture of formaldehyde (37%, 90 ml) and methylamine (40%, 20 ml) which was cooled to −5 °C. The reaction mixture was neutralized to pH 7 with solid bicarbonate and allowed to stand overnight in a refrigerator (4 °C). The product was extracted with chloroform (3 × 30 ml), the washed organic phase dried over natrium sulphate, and the solvent removed in a rotary film evaporator. The residue of N,N-bis{[3-(4-tolyl)-1-methyl-2-triazene-1-yl]methyl}methylamine was recrystallised from diisopropyl ether: n-hexane (2:3); m.p. 82 °C; yield 2.7 g (41%).

Results and Discussion
N-Azo coupling of −M and +M substituted arenediazonium ions with methylamine-formaldehyde premix leads to a variety of compounds the structure of which is sensitive to a) the substituent in the phenyl ring, b) proportion of reactants, c) temperature, and d) pH of the reaction.

3,7-Bis-(4-X-aryl)-1,5,3,7-dioxadiazocanes (Fig. 3) were isolated from coupling of benz-

\[4-X-C_6H_4-N(CH_2-O-CH_2)_2N-C_6H_4-X-4.\]

Fig. 3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>X</th>
<th>Yield [%]</th>
<th>M.p. [°C]</th>
<th>Arom. (AA′BB′) (8 H, 2 d)</th>
<th>J [Hz]</th>
<th>δ (1H NMR) in CDCl₃ M+ m/z</th>
<th>IR ν [cm⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>4-F₂C</td>
<td>18</td>
<td>201</td>
<td>6.92, 7.23</td>
<td>9</td>
<td>5.24</td>
<td>1030</td>
</tr>
<tr>
<td>3b</td>
<td>4-CH₃OOC</td>
<td>49</td>
<td>217</td>
<td>6.90, 7.70</td>
<td>9</td>
<td>5.22</td>
<td>386, 1035</td>
</tr>
<tr>
<td>3c</td>
<td>4-NC</td>
<td>50</td>
<td>227</td>
<td>6.89, 7.25</td>
<td>8.5–9</td>
<td>5.21</td>
<td>320, 1040</td>
</tr>
<tr>
<td>3d</td>
<td>4-NO₂</td>
<td>53</td>
<td>258</td>
<td>6.93, 7.81</td>
<td>9</td>
<td>5.28 (in d₆-DMSO)</td>
<td>360, 1035</td>
</tr>
</tbody>
</table>

Table. Physical data of 3,7-bis(4-X-aryl)-1,5,3,7-dioxadiazocanes.
zenediazonium ion, substituted with a powerful electron-withdrawing group, in a reaction that was ultimately adjusted to pH 1. The structure of 3,7-bis(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocane (3a) and of related 4-methoxycarbonyl- (3b), 4-cyano- (3c) and 4-nitrophenyl- (3d) analogues (Table) was elucidated by spectroscopic and analytical methods.

The 1H NMR spectra in CDCl3 and d6-DMso revealed a typical A A 'BB' pattern of p-disubstituted benzenes (8H, 2d), centered around δ 6.92 and δ 7.23, and a broad singlet of the methylene protons (8H) at δ 5.21–5.28, integrating to 1:1. Neither signal showed any exchange after deuteriation. The relatively broad resonance of the methylene protons may be due to slow conformational changes associated with the dioxadiazocane ring. Moreover, no signal could be seen in the 1H NMR spectra at δ 3.13–3.31, characteristic for 3N methyl protons in triazenes [4]. As expected, none of the dioxadiazocanes — though sensitive to acid — showed diazo C-coupling with the NEN reagent. Mass spectra revealed the following molecular ions: (3a) C18H16O2N2F6, m/z 406 (15%); (3b) C20H22O6N2, m/z 386 (66%); (3c) C18H15O6N4, m/z 320 (17%); (3d) C16H14O6N4, m/z 360 (17%), in complete agreement with the established structure.

The mechanism of 3,7-bis(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocane formation is proposed in the Scheme.

The kinetically relevant intermediate is 1-methyl-3-(4-trifluoromethylphenyl)triazene (4a), the unconjugated tautomeric, favoured by the CF3 substituent at the 4-position of the phenyl ring [16]. Condensation of 4a with formaldehyde would lead to 3-hydroxymethyl-1-methyl-3-(4-trifluoromethylphenyl)triazene (4b) which would subsequently cleave at low pH to methanediazonium ion and N-hydroxy-4-trifluoromethyl-aniline (4c) which reacts with another molecule of formaldehyde to give N,N-di-hydroxymethyl-4-trifluoromethylaniline (4d).

Elimination of water from the protonated form of 4e leads to N-hydroxyethyl-N-methylene-4-trifluoromethylanilinium ions (4f) which condense across the –N=CH2 double bond to afford 3,7-bis(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocane. We became aware of previous publication reporting the structure of 1,5-bis(4-trifluoromethylphenyl)-3,7-dioxo-1,5-diazacyclooctane (3a) [18] first after our preliminary communication [17].

A major interest in our laboratory is that 3,3-dimethyl-1-(2,4,6-trichlorophenyl)triazene shows a pronounced tumour-inhibitory action against murine
TLX 5 lymphoma (IST 79%) and ADJ/PC6 plasmocytoma (therapeutic index 25). By virtue of its chlorination at the 2,4,6-positions of the phenyl ring and our previous metabolic experience [8], the compound is well suited for mechanistic chemical studies. In this vein we thus coupled 2,4,6-trichlorobenzene-diazonium chloride with methylamine-formaldehyde mixture but the reaction yielded no single product but left a yellow viscous residue. Column chromatography enabled the isolation of 3,11-dimethyl-1,7,13-tris-(2,4,6-trichlorophenyl)-5,9-dioxa-1,2,3,7,11,12,13-heptazatrideca-1,12-diene (Fig. 5).

![Fig. 5. 3,11-Dimethyl-1,7,13-tris-(2,4,6-trichlorophenyl)-5,9-dioxa-1,2,3,7,11,12,13-heptazatrideca-1,12-diene.](image)

The elution of the column with diisopropyl ether removed the bulk of the products but an efficient fractionation of individual components could not be effected. The mixture was acetylated and fractionated on a silica gel column in diisopropyl ether. After collecting 40 ml of effluent, N-methyl-N-[3-(2,4,6-trichlorophenyl)-1-methyl-2-triazen-1-yl]methylacetamide (Fig. 6) and [3-(2,4,6-trichlorophenyl)triazen-1-methyl-2-triazen-1-yl]methylmethylamine (not shown) by an attack of electrophilic acetyl at the central nucleophilic N-atom.

We also report the isolation of dimeric triazenyI derivatives that were formed by N-diazo coupling of arenediazonium chlorides bearing electropositive (CH$_3^-$) substituents. An example of such a compound is N,N-bis[3-(4-tolyl)-1-methyl-2-triazen-1-yl]methylmethylamine (Fig. 8).

![Fig. 8. N,N-Bis[3-(4-tolyl)-1-methyl-2-triazen-1-yl]methylmethylamine.](image)

The structures of the isolated compounds [19] were formed from intermediary 1-aryl-3-hydroxymethyl-3-methyltriazenes by the following mechanisms: 1. Loss of formaldehyde to yield 1-aryl-3-methyltriazene, followed by a prototropic shift and subsequent release of methanediazonium ion, or 2. by formaldehyde retention and ionization of the methylamine to the corresponding triazenium (iminium) ion. The released electrophilic species react with available nucleophilic N, O or C atoms present in the reaction mixture. It is conceivable that electrophilic intermediates, generated from 1-aryl-3,3-dimethyl-
Triazenes in vivo, react in a similar manner with crucial nucleophilic sites in cellular biopolymers. These electrophiles may thus provide a molecular basis for the differentiation between the carcinogenic and/or tumour-inhibitory activity that is associated with the open chain triazene compounds [20–21].

We have begun studies to characterize the biological effects of several of these compounds. Preliminary results with the 3,7-bis(4-X-aryl)-1,5,3,7-dioxadiazocanes, tested for mutagenic activity in the Ames test, suggest that compounds 3a, 3b and 3d are weakly mutagenic in strains TA98 and TA100. Surprisingly, 3,7-bis(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocane shows a pronounced and protracted mitogenic effect (over 9 days) in the lymphatic organs of rats [23]. These in vitro and in vivo studies are being continued.

Acknowledgement

We thank Dr. Helmut Bartsch and his staff at the IARC in Lyon for mutagenicity tests.