Tyrosine Oxidation by NOI in Aqueous Solution

Walter A. Priitz

Universität Freiburg, Institut für Biophysik und Strahlenbiologie, Albertstr. 23, D-7800 Freiburg

Z. Naturforsch. 39c, 725–727 (1984); received March 9, 1984

2,2'-Biphenol, Nitrogen Dioxide, Nitro-Tyrosine, Phenoxyl Radical, Tyrosine Oxidation

Nitrogen dioxide, formed by γ-radiolysis in deaerated aqueous nitrate/nitrite solutions, is capable of oxidizing Gly-Tyr in favourable competition with the natural decay of NO2⁻ by dimerization and disproportionation. 2,2'-Biphenolic tyrosine dimers and nitro-tyrosine were identified spectroscopically as stable products. The results suggest that NO2⁻ reacts with the peptide by electron abstraction, generating Gly-Tr phenoxyl radicals (PhoO') which terminate by dimerization (2PhoO' -> 2,2'-biphenol) and NO2-scavenging (PhoO' + NO2 -> Nitro-Tyr).

Introduction

The kinetics of the elementary chemical processes of nitrogen dioxide in aqueous solution have been resolved by application of pulse radiolysis techniques [1]

\[
2\text{NO}_2^\cdot = \text{N}_2\text{O}_4
\]
(1)

\[
\text{N}_2\text{O}_4 + \text{H}_2\text{O} \rightarrow 2\text{H}^+ + \text{NO}_2^2^- + \text{NO}_3^-(2)
\]

In competition with these reactions NO2⁻ was found capable of oxidizing Fe(CN)6³⁻ at pH 7 [2] thus the oxidation-reduction potential of the NO2⁻/NO3⁻ couple is probably well above 0.36 V, possibly in the order of 0.9 V [3]. The chemical behaviour of NO2⁻ in aqueous solutions containing organic compounds has however not been explored up to date, although NO2⁻ is supposed to be a highly deleterious agent in biological systems [4]. In the present study, using Gly-Tyr as model compound, it is shown that NO2⁻-induced oxidation of tyrosine in dilute aqueous solution competes favourably with the natural decay of NO2⁻ by the reactions (1) and (2).

Experimental

NO2⁻ was generated by γ-irradiation of deaerated aqueous solutions containing 10⁻² m NaNO2 and

5 x 10⁻² m NH4NO2 at pH > 8 (unbuffered). The system involves reactions (3) to (6), [1, 5–7]

\[
\text{H}_2\text{O} \rightarrow \text{HO}^-, \text{e}_\text{aq}^-, \text{H}^+ \text{ etc.} \quad (3)
\]

\[
\text{OH}^- + \text{NO}_2^- \rightarrow \text{OH}^- + \text{NO}_3^- \quad (4)
\]

\[
\text{e}_\text{aq}^- + \text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{H}_2\text{O}^- \rightarrow 2\text{OH}^- + \text{NO}_2^- \quad (5, 6)
\]

\[k_4 \approx k_5 \approx 10^{10}\text{ M}^{-1}\text{s}^{-1}; k_6 = 5.5 \times 10^4\text{s}^{-1}\]

and avoids reactions of eaq⁻ with O₂ and NO3⁻ [6]. The yield of NO2⁻ is Y(NO2⁻) ~ 0.57 μM/Gy (G(NO2⁻) = 5.5 per 100 eV); reactions of NO₂⁻, formed by interaction of H⁺ with NO3⁻ [8], were not considered in view of the low yield (~ 0.06 μM/Gy).

Solutions were prepared shortly before each experiment with redistilled water, Gly-Tyr from Serva (Heidelberg) and A.R. grade inorganic chemicals. After deaeration, by 30 min bubbling with N₂ gas, the solutions were irradiated in the closed test tube at ambient temperature, using a 35 Gy/min 90Co-γ-source ("220 Gammacell"; Atomic Energy of Canada Ltd.).

Results and Discussion

γ-Irradiation of the deaerated NO2⁻/NO3⁻ system (see Experimental) in the absence of the model compound Gly-Tyr gave no detectable changes in the absorption spectra, indicating that NO2⁻ reverts quantitatively to the parent ions by the reactions (1) and (2). When Gly-Tyr was added to the NO2⁻/NO3⁻ system, stable products were formed upon γ-irradiation with characteristic pH-dependent absorption...
and fluorescence spectra, as shown in Figs. 1 and 2. The Gly-Tyr concentration in these experiments was sufficiently low to exclude reactions of $'OH$ and e_aq with the peptide. It is evident thus that NO$_2^-$, generated by the reactions (4) to (6), is capable of reacting with Gly-Tyr in competition with the natural NO$_2^-$ decay by reactions (1) and (2), even at low peptide concentrations (0.25 mM).

In an attempt at product identification we recall that phenoxyl radicals formed by 1-electron oxidation of Gly-Tyr (e.g. by N$_3^-$) efficiently dimerize to form the Gly-Tyr 2,2'-biphenol [9], which deprotonates at pH ~ 7.4; the alkaline form of 2,2'-biphenol (not the acid form) absorbs with a maximum at 316 nm ($\varepsilon_{316} = 5790$ M$^{-1}$cm$^{-1}$) [10] and exhibits a strong fluorescence with a peak at 410 nm. The characteristic 316 nm absorption and the 410 nm fluorescence (excited at 325 nm) is clearly seen at pH 8.4 in Fig. 1 B and Fig. 2, respectively, and it was also confirmed that this species disappears at lower pH with pK ~ 7.4 (see OD (325 nm) and I (410 nm) titration curves in the Figures). The 2,2'-biphenol does, however, not exhibit absorption peaks at 290 and 428 nm, as indicated particularly in the spectrum at low peptide concentration (Fig. 1A). The 290/428 nm absorption is characteristic for nitro-tyrosine, and an extinction coefficient of ε_{428}(Nitro-Tyr) = 4100 M$^{-1}$cm$^{-1}$ has been reported [11]. Nitro-tyrosine deprotonates at pK ~ 7, with an accompanying shift in the absorption maximum to 360 nm [11]. This behaviour is clearly demonstrated (Fig. 1) by the 428 nm titration curve and the spectrum C at pH 5.7.
The above observations suggest that NO$_2^\cdot$, like N$_3^\cdot$ [9], is capable of electron (or H-atom) abstraction from tyrosine to form phenoxyl radicals (PheO$^\cdot$),

$$\text{Tyr} + \text{NO}_2^\cdot \rightarrow \text{NO}_2^- + \text{H}^+ + \text{PheO}' \quad (7)$$

About 62% of the phenoxyls dimerize in the absence of other reagents to form 2,2'$'$-biphenols [9],

$$2 \text{PheO}' \rightarrow 2,2'$'$-\text{biphenol (316 nm)} \quad (8)$$

Formation of nitro-tyrosine can conceivably arise from interactions of PheO$^\cdot$ with NO$_2^\cdot$,

$$\text{O} \quad \cdot \quad \text{NO}_2^\cdot \rightarrow \text{NO}_2^- \quad (428 \text{ nm}) \quad (9)$$

Reaction (8), i.e. the 316 nm species, predominates at high tyrosyl concentration (Fig. 1 B) and reaction (9), i.e. the 428 nm species, contributed particularly at low tyrosyl concentration (Fig. 1 A), where reaction (7) is slower.

From Fig. 1 the product yields, \(Y = OD/(\varepsilon \cdot D)\), can be roughly estimated. By assuming that OD(428) = 0.036 (Fig. 1 A) is due to nitro-Tyr only, and OD(316) = 0.099 (Fig. 1 B) is pertinent to 2,2'$'$-biphenol in 85% (since nitro-Tyr contributes), we find \(Y(\text{nitro-Tyr}) \sim 0.1 \mu\text{M/Gy at } 0.25 \text{ mM Gly-Tyr, and} Y(2,2'$'$-\text{biphenol}) \sim 0.16 \mu\text{M/Gy at } 1 \text{ mM Gly-Tyr.}

Since two NO$_2^\cdot$ radicals (\(Y(\text{NO}_2^\cdot) \sim 0.57 \mu\text{M/Gy}\)) are required for each tyrosine dimer, this means that 56% of the NO$_2^\cdot$ end up in 2,2'$'$-biphenol at 1 mM Gly-Tyr. Comparing this value with the phenoxyl \rightarrow 2,2'$'$-biphenol yield (62%) [9], it can be concluded that NO$_2^\cdot$ almost quantitatively oxidizes tyrosine under these conditions.

Conclusions

The results presented reveal that NO$_2^\cdot$ can act as a strong one-electron oxidant in aqueous environment; oxidation of the tyrosyl model compound competes favourably, even at low concentrations, with the disproportionation of NO$_2^\cdot$ in water. It can be anticipated therefore that NO$_2^\cdot$ is capable also of inactivating proteins and other constituents of living cells such as thiols. Such direct action of NO$_2^\cdot$ may be generally involved in the deleterious effects initiated by NO$_2^\cdot$ in biological systems. It should be noted also that oxidation (reaction (7)), as compared to disproportionation (reaction (2)), generates up to twice the yield of harmful nitrite.

Acknowledgements

The experiments were carried out with the technical assistance of Silvia Frei.

[1] M. Grätzel, A. Henglein, J. Lilie, and G. Beck, Ber. Bunsenges. phys. Chem. 73, 646 (1969). Since an incorrect relation \((k_{1b} = K \cdot k_{1f})\) was used by these authors, we have quoted \(k_{1b} = K \cdot 2k_{1f}.\)