New Cembranoids from Tobacco, II*

Anne-Marie Bylov, Ursula Brümmer, Werner Hass, Friedlieb Seehofer, and Volker Heemann

B.A.T Cigaretten-Fabriken GmbH, Forschung und Entwicklung, Bahrenfelder Chaussee 139, 2000 Hamburg 50

Volker Sinnwell
Institut für Org. Chemie der Universität, Martin-Luther-King-Platz 6, 2000 Hamburg 13

Z. Naturforsch. 38c, 515 – 516 (1983); received March 17, 1983

Nicotiana tabacum, Solanaceae, Diterpenoids, Cembranoids, Methylethers

The methylethers 4-O,8-O-dimethyl-(15, 2E, 4R, 6S, 11E)-2,6,11-cembratriene-4,8-diol (9), 4-O-methyl-(1S, 2E, 4R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4) und 4-O,6-O-methyl-(1S, 2E, 4R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (8) were identified as new natural products from tobacco. They were isolated from processed tobacco as well as from leaf surface gum of fresh tobacco.

The spectral data of all six methylethers of (1S, 2E, 4S, 6R, 7E, 11E)- and (1S, 2E, 4R, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol are given.

Leaves of Nicotiana tabacum are covered with a sticky exudate, which contains diterpenoids. Depending on the genetic background, tobacco cultivars produce the macrocyclic cembranoids, the carbocyclic labdanoids or both [1, 2]. Bioconversion and biodegradation of these compounds leads to a large number of diterpenoid-derivatives, and norterpenoids which are important tobacco flavour substances [3]. To get more insight into mechanisms of bioconversion and biodegradation, the distribution of diterpenoids in leaf surface gum and aged tobacco was investigated.

Aged tobacco was extracted with liquid CO$_2$ and fractionated as described earlier [4]. The fractions eluted from silicagel with petrolether:diethylether 75:25 and 50:50 (v:v) were separated further by repeated columnchromatography and preparative TLC. Some of the isolates were tentatively identified as methylethers of cembranoids by molecular ion, by fragment ion M$^+ - 32$ (M$^+ - CH_3 OH$) and by singlets between 3.1 and 3.25 ppm in 1H-NMR spectra. Investigation of MS, H-NMR 13C-NMR data resulted in identification of a momethylether [5] and a dimethylether [6] as derivatives of 2,7,11-cembratriene-4,6-diols.

As far as we know methylethers of cembranoids have not been described as natural occurring compounds. For precise stereochemical assignment all possible methylethers of the two natural occurring (1S, 2E, 4S, 6R, 7E, 11E)- and (1S, 2E, 4R, 6R, 7E, 11E)-2,7,11-cembratriene-4,6 diols (1, 2) were synthesized by Williamson-Synthesis with methyljodide and sodiumhydride in dry diethylether or tetrahydrofurane at moderate temperature.

Comparison of spectral generated from natural occurring compounds and synthesized products

Reprint requests to Dr. V. Heemann.
* Part I: see [4].
0341-0382/83/0700-0515 $ 01.30/0

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Enthall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition 'no derivative works'). This is to allow reuse in the area of future scientific usage.
Table I. 13C-NMR chemical shifts and assignments for compounds 3—9.

<table>
<thead>
<tr>
<th></th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
<th>C-7</th>
<th>C-8</th>
<th>C-9</th>
<th>C-10</th>
<th>C-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>46.7</td>
<td>131.0</td>
<td>133.3</td>
<td>76.9</td>
<td>48.5</td>
<td>66.4</td>
<td>130.4</td>
<td>136.2</td>
<td>39.1</td>
<td>23.4</td>
<td>124.6</td>
</tr>
<tr>
<td>4</td>
<td>46.5</td>
<td>131.5</td>
<td>134.0</td>
<td>75.7</td>
<td>53.0</td>
<td>63.9</td>
<td>133.1</td>
<td>135.6</td>
<td>38.7</td>
<td>23.0</td>
<td>124.3</td>
</tr>
<tr>
<td>5</td>
<td>46.4</td>
<td>127.4</td>
<td>137.7</td>
<td>72.2</td>
<td>51.7</td>
<td>74.7</td>
<td>128.4</td>
<td>137.9</td>
<td>38.7</td>
<td>23.3</td>
<td>124.4</td>
</tr>
<tr>
<td>6</td>
<td>46.1</td>
<td>129.2</td>
<td>136.4</td>
<td>71.1</td>
<td>50.7</td>
<td>72.8</td>
<td>130.0</td>
<td>137.6</td>
<td>38.8</td>
<td>23.0</td>
<td>124.4</td>
</tr>
<tr>
<td>7</td>
<td>46.6</td>
<td>129.7</td>
<td>133.6</td>
<td>76.7</td>
<td>47.3</td>
<td>132.7</td>
<td>138.2</td>
<td>77.9</td>
<td>42.2</td>
<td>24.2</td>
<td>126.5</td>
</tr>
<tr>
<td>8</td>
<td>46.4</td>
<td>129.5</td>
<td>134.4</td>
<td>75.4</td>
<td>51.0</td>
<td>72.5</td>
<td>132.8</td>
<td>137.1</td>
<td>38.8</td>
<td>23.0</td>
<td>124.4</td>
</tr>
<tr>
<td>9</td>
<td>47.6</td>
<td>127.9</td>
<td>135.9</td>
<td>76.9</td>
<td>51.3</td>
<td>72.9</td>
<td>132.8</td>
<td>137.2</td>
<td>77.9</td>
<td>42.2</td>
<td>27.9</td>
</tr>
</tbody>
</table>

ao-Values in CDC$_{13}$.

b May be reversed.

A first comparison of the distribution in different tobacco types showed that methylethers of cembranoids are enriched in Burley and Oriental tobacco, while only minor amounts could be detected in Virginia tobacco; whether this is due to genetic attributes or to different curing methods cannot yet be decided.

Leaf surface gum of fresh tobacco, which was prepared and fractionated as described earlier [9] contained compounds 4 and 8 in various quantities.

[5] MS (70 eV) [m/z]: 320 (M$^{+}$, 0.3), 302 (M$^{+}$-H$_{2}$O, 7), 288 (M$^{+}$-CH$_{2}$OH, 9), 270(39), 255(14), 227(37), 187(18), 159(37), 145(38), 133(36), 119(44), 105(62), 93(64), 85(100), 81(82). 1H-NMR (CDCl$_{3}$): a o o 0.77 (d, $J = 6.9$ Hz)/0.80 (d, $J = 6.8$ Hz) (H-2), 5.26 (d, $J = 15.7$ Hz, H-6), 5.02 (broad t, H-11), 5.05 (dd, $J = 1.0$ and 10.0 Hz, H-7), 6.52 (dd, $J = 15.8$ Hz, H-3), 2.12 (dd, $J = 10.5$ and 14.4 Hz, H-5a), 2.63 (ddd, $J = 2.0$, 2.7 and 10.0 Hz, H-6), 4.95 (broad t, H-11), 5.18 (d, $J = 15.8$ Hz), 5.21 (dd, $J = 15.8$ and 6.3 Hz), 5.27 (dd, $J = 10.0$ and 1.2 Hz, H-7).

[6] MS (70 eV) [m/z]: 334 (M$^{+}$, 0.7), 319 (M$^{+}$-CH$_{3}$, 0.5), 302 (M$^{+}$-CH$_{2}$OH, 12), 287 (1.8), 270 (21), 255(13), 227(24), 153(22), 105(50), 85(100), 81(68). 1H-NMR (CDCl$_{3}$): a o 0.82 (d, $J = 6.8$ Hz)/0.86 (d, $J = 6.9$ Hz) (H-16/H-17), 1.23 (s, H-18), 1.49 (s, H-20), 1.67 (d, $J = 1.0$ Hz, H-19), 1.71 (dd, $J = 8.0$ and -14.0 Hz, H-5a), 3.15 (s, H-21), 3.23 (s, H-22), 4.27 (dd, $J = 1.2$ and 8.0 and 10.0 Hz, H-6), 5.02 (broad t, H-11), 5.05 (dd, $J = 1.0$ and 10 Hz, H-7), 5.12 (d, $J = 15.8$ Hz, H-3), 5.22 (dd, $J = 4.8$ and 15.8 Hz, H-2).

[7] MS (70 eV) [m/z]: 334 (M$^{+}$, 0.2), 302 (M$^{+}$-CH$_{2}$OH, 7), 287 (302-CH$_{3}$, 2), 270(66), 255(30), 227(58), 199(14), 185(28), 171(32), 159(40), 145(64), 131(52), 119(66), 105(92), 91(94), 85(80), 81(100), 79(92), 55(90). 1H-NMR (CDCl$_{3}$): a o o 0.82 (d, $J = 6.8$ Hz)/0.83 (d, $J = 6.8$ Hz) (H-16/H-17), 1.29 (ss, H-18/H-19), 1.47 (s, H-20), 2.12 (dd, $J = 10.5$ and 14.4 Hz, H-5a), 2.63 (ddd, $J = 20.0$ and -14.4 Hz, H-5a), 3.13 (s, H-21), 3.14 (s, H-22), 5.21 (dd, $J = 8.8$ and 15.7 Hz, H-2), 5.26 (d, $J = 15.7$ Hz, H-3), 5.33 (broad t, H-11), 5.47 (dd, $J = 2.0$ and 16.0 Hz, H-7), 5.72 (ddd, $J = 2.7$, 10.5 and 16.0 Hz, H-6).
