In Vivo Control of Glutamine Synthetase in the Facultative Phototrophic Bacterium Rhodopseudomonas sphaeroides

Harald Engelhardt and Jobst-Heinrich Klemme

Institut für Mikrobiologie der Universität Bonn, Meckenheimer Allee 168, D-5300 Bonn 1, Bundesrepublik Deutschland

Glutamine Synthetase, Adenylation/Deadenylation, Facultative Phototrophic Bacteria, Rhodopseudomonas sphaeroides

In vivo control of glutamine synthetase (GS) in the facultative phototrophic bacterium *Rhodopseudomonas sphaeroides* was studied. The enzyme was partially purified from cells grown photosynthetically in ammonium-malate-medium. Its catalytic properties were characterized by incubation with phosphodiesterase indicating a *in vivo* regulation by adenylation/deadenylation. Adenylation states of GS were measured as a function of variations in the nitrogen source and the light intensity during photosynthetic growth.

Introduction

Glutamine synthetase (EC 6.3.1.2) is one of the key enzymes in nitrogen metabolism. In gram-negative bacteria, its activity is regulated by covalent modification (adenylation/deadenylation). In addition to its catalytic function, the enzyme plays an important regulatory role in controlling the synthesis of various enzymes of N-metabolism in *Klebsiella aerogenes* [1]. Recently, evidence has been presented that, in the two facultative phototrophic bacteria, *Rhodopseudomonas capsulata* and *Rps. sphaeroides*, glutamine synthetase (GS) is also involved in the control of nitrogen fixation [2-4]. The GS of *Rps. capsulata* has already been shown to be modified by adenylation/deadenylation [5]. However, evidence for this covalent modification of GS in the second species, *Rps. sphaeroides*, was still lacking. In this communication we show that also the GS in *Rps. sphaeroides* is modulated *in vivo* by adenylation/deadenylation. Interestingly, the regulatory pattern of the *Rps. sphaeroides* enzyme differs from that of *Rps. capsulata* in that, in cultures with high external NH₄⁺-concentration, the GS is not fully adenylylated and, secondly, that the state of GS-adenylation is markedly influenced by the light intensity during photosynthetic growth.

Materials and Methods

The present study was conducted with *Rps. sphaeroides* strain ATCC 17023 (= DSM 158). Stock cultures were grown photosynthetically at 30 °C and 2500 lux light intensity in 50 ml-screw cap bottles using a malate-(NH₄)₂SO₄-medium [6] supplemented with 0.05% (w/v) yeast extract. For growth experiments and enzyme assays, the bacteria were grown in defined media with malate, fructose or acetate as C-sources (0.4% [w/v] of each) and (NH₄)₂SO₄ (7.5 mM), Na-glutamate (15 mM) or glutamine (15 mM) as N-sources. For photosynthetic growth, illumination of the culture flasks was provided by 60 w tungsten lamps, or — if higher light intensities were required — by two 150 w “Attralux” lamps (Philips). Aerobic cultures were grown at 30 °C in Erlenmeyer flasks on a rotary shaker. Growth was monitored by measuring the turbidity at 660 nm in a “Spectronic 20” photometer (Bausch & Lomb, München). For the assay of glutamine synthetase activity (test system see below) in whole cells, the cultures were supplemented with 0.1 mg per ml of the detergent cetyltrimethyl-ammoniumbromide (CTAB). According to Bender et al. [7], the addition of CTAB prior to the collection of cells by centrifugation prevents rapid changes of the adenylation state of GS. To purify GS, cells were resuspended in 50 mM imidazole buffer, pH 7, containing 1 mM MnCl₂. The cell suspension was then desintegrated by ultrasonic treatment. Unbroken cells and large cell debris were separated from the homogenates by centrifugation at 5000 rpm. Protein concentrations of the extracts were determined by the Lowry method [8].

GS (adenylated form) was partially purified from cell free extracts of NH₄⁺-grown cells (stationary phase) by firstly centrifuging the extracts for 20 min...
at 120,000 × g and then subjecting the GS containing supernatant to a fractionation with (NH₄)₂SO₄. The fraction precipitating between 65 and 80% saturation was collected by centrifugation at 10,000 rpm and dissolved in a small volume of 50 mM imidazole buffer, pH 7, plus 1 mM MnCl₂. This procedure increased the specific GS activity (transferase test, see below) from about 0.2 to 12 μmol/min · mg protein.

GS activities were measured by using the γ-glutamyltransferase assay of Shapiro and Stadtman [9] as modified by Bender et al. [7]. In experiments designed to estimate the adenylylation state of GS, CTAB-treated whole cells were used as enzyme source. The extent of inhibition by 60 mM MgCl₂ of the Mn²⁺-dependent transferase activity measured at the “isoactivity point” of GS (see section “Results”) was taken as an index of the adenylylation state. The latter was calculated by using the equation

\[\bar{\bar{n}} = 12 - 12 \left(\frac{\text{transferase activity with 60 mM MgCl₂}}{\text{transferase activity minus MgCl₂}} \right) \]

The “isoactivity point” of adenylylated and de-adenylylated GS (pH 6.9) was determined according to the method described in [7].

Results

The glutamate analogue, L-methionine-sulfoximine (MSO) irreversibly inactivates glutamine synthetases of eukaryotic and prokaryotic origin [10, 11]. Thus, it can be expected that MSO inhibits such cellular activities which depend on GS activity. Examples in this respect are NH₄⁺-assimilation at low external ammonium salt concentration, assimilation of molecular nitrogen etc. As shown in Fig. 1, MSO at a concentration of 0.1 mM severely inhibits photosynthetic growth of Rps. sphaeroides even with high external NH₄⁺-concentration (15 mM). The growth inhibition by MSO is completely compensated by 15 mM glutamine or — similar to the results obtained with Rps. capsulata [12] — 15 mM glutamate. In vitro-tests with the partially purified GS of Rps. sphaeroides (for purification procedure, see section Materials and Methods) revealed that MSO at a concentration of 0.1 mM inactivated GS to about 99%. The inhibition of growth in NH₄⁺-medium by MSO and its reversal by glutamine are consistent with an obligatory role of GS in ammonium assimilation (even at high external concentrations of the latter). It has been postulated already in an earlier paper from this laboratory [6] that glutamate dehydrogenase (EC 1.4.1.2) of Rps. sphaeroides, due to its characteristic regulatory properties, does not function in ammonium assimilation in this organism. The severe growth inhibition by MSO further supports this notion. The finding that also glutamate compensates the inhibitory action of MSO might be due to protection of MSO-binding sites of GS.

Extracts from Rps. sphaeroides cells harvested from a photosynthetic malate-ammonium-culture (stationary phase) catalyze an ADP-dependent glutamyl-transfer with rates of about 0.2 μmol/min · mg protein. In such extracts, the ratio of transferase activity with 60 mM MgCl₂ to that without MgCl₂ is
in the range of 0.04 to 0.1, suggesting the occurrence of an adenylylated GS in NH₄⁺-grown cells (see [7]). By treatment with phosphodiesterase (EC 3.1.4.1), adenylylated GS can be converted to the deadenylated form [7]. Such changes in the adenyllylation state of GS are reflected in changes of the MgCl₂-sensitivity of the transferase activity.

The data presented in Fig. 2 show that, during an incubation of a partially purified GS from NH₄⁺-grown cells with phosphodiesterase, the activity ratio increases from about 0.05 to values close to 0.7 within 3 min. In accord with the data of ref.[7], we interpret this finding in that phosphodiesterase treatment of GS converts the enzyme from the adenylylated to the deadenylated form.

Specific GS activities (assayed at the “isoactivity point” at pH 6.9) were measured in CTAB-treated Rps. sphaeroides cells grown with different C- and N-sources. The data in Table I show that, independent of the C-source, the lowest GS levels were measured in cultures with NH₄⁺ as N-source. Thus, regulation of GS activity in Rps. sphaeroides not only occurs at the level of covalent modification, but also at the level of gene expression. The adenyllylation

<table>
<thead>
<tr>
<th>Culture condition</th>
<th>C-source</th>
<th>N-source</th>
<th>Glutamine synthetase activity [μmol/min mg protein]</th>
<th>Adenylylation state of glutamine synthetase [n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic, light</td>
<td>malate</td>
<td>NH₄⁺</td>
<td>0.19 - 0.22</td>
<td>5 – 6</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>fructose</td>
<td>NH₄⁺</td>
<td>0.2 - 0.3</td>
<td>5 - 6</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>acetate</td>
<td>NH₄⁺</td>
<td>0.17 - 0.20</td>
<td>5 - 6</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>malate</td>
<td>glutamate</td>
<td>0.7 - 0.9</td>
<td>0 - 0.6</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>malate</td>
<td>glutamate</td>
<td>0.2</td>
<td>7 – 9</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>malate</td>
<td>glutamate</td>
<td>0.2</td>
<td>6 – 8</td>
</tr>
<tr>
<td>Anaerobic, light</td>
<td>malate</td>
<td>glutamate</td>
<td>0.2</td>
<td>10 – 11.5</td>
</tr>
<tr>
<td>Aerobic, malate</td>
<td>NH₄⁺</td>
<td>0.2</td>
<td>2 – 3</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>NH₄⁺</td>
<td>0.2</td>
<td>2 – 3</td>
<td></td>
</tr>
</tbody>
</table>

GS activities (γ-glutamyl transferase activity) were measured in CTAB-treated whole cells according to the method described in [7]. Adenylylation states were calculated by using the ratio of transferase activity with MgCl₂ to that without as index (see section Materials and Methods) with n giving the average number of adenyllylated subunits.

Fig. 2. Effect of phosphodiesterase (EC 3.1.4.1) treatment of Rps. sphaeroides glutamine synthetase (GS) on Mg²⁺-sensitivity of GS-catalyzed transferase reaction. GS partially purified from malate-NH₄⁺-cultures was used for the experiment. 3 units of GS (1 unit is the enzyme activity catalyzing the formation of 1 μmol γ-glutamylhydroxamate per min) per ml were incubated with 1.6 units snake venom phosphodiesterase (Boehringer, Mannheim) in 50 mM imidazole buffer, pH 7, plus 1 mM MnCl₂ at 30 °C. At the times indicated, 0.1 ml-samples were removed from the mixture and assayed for transferase activity (37 °C, pH 6.9) in the presence and absence of 60 mM MgCl₂. ○, without Mg²⁺; no phosphodiesterase (PD) treatment; ●, plus Mg²⁺; no PD treatment; □, without Mg²⁺; PD treatment; ■, plus Mg²⁺, PD treatment.

Discussion

Like glutamine synthetases in most gram-negative bacteria, including that of the facultative photosynthetic bacterium, Rps. capsulata [5], the enzyme of Rps. sphaeroides was shown to be covalently modified by adenyllylation/deadenyllylation. The regulatory pattern of GS in the latter organism is similar to that described for the enzyme in Rps. capsulata. This is of interest in so far as nitrogenase activities in both organisms seem to be closely connected with GS activity. Hillmer and Fahlbusch [2] proposed that
GS in *Rps. capsulata* might control N₂-fixation by direct interaction with the nitrogenase enzyme-complex. On the other hand, Jones and Monty [4] suggested that glutamine (i.e. the product of the GS-catalyzed reaction) was involved in nitrogenase repression in *Rps. sphaeroides*. Our present studies have shown that the degree of GS-adenylylation in NH₄⁺-cultures of *Rps. sphaeroides* is not as high as in *Rps. capsulata* (see ref. [5]). For GS of the latter species, adenylylation states of \(\bar{n} = 10-11 \) were measured in NH₄⁺-grown cells. In addition, these values were independent of the light intensity during growth [5]. These differences in the regulatory pattern of GS might be important in a reevaluation of the role of GS in nitrogenase regulation. If the GS-mediated control of nitrogenase activity and/or biosynthesis would depend on the adenylylation state of GS, the response of nitrogenase activity (measured, for example, as the ability of cells to photoproduce molecular hydrogen) to variations in such cultural condition that have been shown to affect the adenylylation state of GS, would be rather different in *Rps. capsulata* and *Rps. sphaeroides*.

Acknowledgements

The investigations were supported by the Deutsche Forschungsgemeinschaft as part of the Schwerpunktprogramm „Stoffwechsel der anorganischen Schwefel- und Stickstoffverbindungen“ and the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen.