Induced Isoflavonoids of *Erythrina sandwicensis*

John L. Ingham

Phytochemical Unit, Department of Botany, University of Reading, Reading RG6 2AS, England

Z. Naturforsch. 35 c, 384–386 (1980); received January 22, 1980

Leguminosae, *Erythrina*, Pterocarpsans, Isoflavans, Phytoalexins

Two new phytoalexins isolated from the fungus-inoculated leaflets of *Erythrina sandwicensis* have been identified as (−)-6αS;11αS-3,6α,9-trihydroxy-10-isopentenylpterocarpan (sandwicarpin) and (−)-6αR;11αR-3-hydroxy-9-methoxy-10-isopentenylpterocarpan (sandwicensin). These compounds co-occur with several known pterocarpan (demethylmedicarpin, 3,6α,9-trihydroxy-pterocarpan, phaseollidin and cristaclcarpin) and isoflavan (demethylvestitol and isovestitol) derivatives. The preparation and spectral (UV, MS) characteristics of 3-methoxy-9-hydroxy-10-isopentenylpterocarpan are also described.

Introduction

It was recently reported that demethylmedicarpin (3,9-dihydroxypterocarpan, 1), phaseollidin (3,9-dihydroxy-10-isopentenylpterocarpan, 2) and the previously undescribed 6α-hydroxypterocarpan, cristaclcarpin (3,6α-hydroxy-9-methoxy-10-isopentenylpterocarpan, 3) were produced as phytoalexins by fungus (*Helminthosporium carbonum*)-inoculated leaflets of the papilionate legume, *Erythrina crista-galli* (tribe Phaseoleae; subtribe Erythrininae) [1, 2]. Studies of the genus *Erythrina* have now been extended to include *E. sandwicensis*, a tree native to the Hawaiian islands. If gel TLC examination of diffusates [3] from leaflets exposed to *H. carbonum* revealed numerous phenolic compounds which were eluted and, when necessary, further purified as outlined under Experimental. Six of these compounds were identified (UV, MS, TLC) as the known isoflavonoids 1–3, 3,6α,9-trihydroxypterocarpan (4), demethylvestitol (7,2',4'-trihydroxyisoflavan, 5) and isovestitol (7,4'-dihydroxy-2'-methoxyisoflavan, 6) [1, 4, 5]. In addition, two hitherto unreported pterocarpan were also isolated from *E. sandwicensis*; their characterisation as 3,6α,9-trihydroxy-10-isopentenylpterocarpan (sandwicarpin, 7) and 3-hydroxy-9-methoxy-10-isopentenylpterocarpan (sandwicensin, 8) is described in this communication.

Results and Discussion

The neutral (EtOH) UV spectrum of sandwicarpin (7) was virtually superimposable on that of cristaclcarpin (3); upon addition of conc. HCl, 7 underwent rapid dehydration (indicative of a pterocarpan having tertiary (C-6α) hydroxylation) to yield a pterocarpene with intense UV maxima at 336 and 354 nm (cf. 3, EtOH + HCl 337 and 354 nm [1]). MS analysis gave M+ 340 together with the expected major fragments at m/e 322 (M+ - 18 (Hz O)), 267 (M+ - 18 - 55) and 266 (M+ - 18 - 56); loss of 55 and/or 56 mu (isobutene) from either the parent ion or a derived fragment is characteristically observed in the MS of pterocarpan (e. g. 2) and other isoflavonoids possessing an isopentenyl sidechain [6–8]. The substitution/oxygenation pattern of sandwicarpin was confirmed by PMR analysis (see Experimental) and by methylation (CH2N2) to afford a dimethyl ether (M+ 368) identical (UV, MS, TLC) with 3-O-methylcristacarpin (9). Formation of the latter compound...
pound establishes beyond doubt that sandwicarpin is
3,6a,9-trihydroxy-10-isopentenylpterocarpan (7).

The second new isoflavonoid (sandwicensin, 8)
had M+ 338 with associated fragments at m/e 283/
282 (M+ − 55/56) and could be methylated to give a
monomethyl ether (M+ 352) indistinguishable (UV, TLC) from the 3,9-di-O-methyl derivative (10)
of phaseollidin (2). As with cristacarpin (3), a dis-
tinct alkali UV maximum at approx. 250 nm (C-3
OH) and the formation of a bright yellow product
with diazotised p-nitroaniline (C-9 OMe) allowed
the OH/OMe groups of 8 to be placed at C-3 and
C-9 respectively [1]. Sandwicensin is thus 3-hydroxy-
9-methoxy-10-isopentenylpterocarpan. This struc-
ture was indirectly confirmed by comparison of 8
with its isomer 3-O-methylphaseollidin (11) pre-
pared via selective methylation of 2; sandwicensin
and pterocarpan 11 were readily distinguished by
TLC/UV (alkali maxima) and reaction to diazotised
p-nitroaniline (see Experimental and [1]).

Fungus-induced diffusates were found to contain
sandwicarpin (7) and sandwicensin (8) at concentra-
tions (based on log ε = 3.78 at 286 nm for 2 [9]) of
11−22 and < 0.3−1 µg/ml respectively. Correspond-
ing values for the other E. sandwicensis isoflavonoids were: 1, 0.5−1 µg/ml; 2, 10−20 µg/ml; 3, 4−10 µg/
ml; 4, 1−3 µg/ml; 5, 9−24 µg/ml; and 6, 2−7 µg/
ml. Compounds 1−8 were not isolated from leaflets
treated with de-ionised H2O (control) or conidial suspensions
of H. carbonum (2), 0.42 (Si gel TLC, CHCl3:M eOH, 20:1) to afford diazo-
ised p-nitroaniline-positive zones at Rf 0.14
(2), 0.42 (3), 0.37 (6), 0.32 (1), 0.18 (7) and 0.09
(4 + 5). These were eluted (EtOH) and with the ex-
ception of 2 and 3 further purified as follows: i) 1
and 6, n-pentane:Et2O:glacial HOAc (PEA) 75:25:3,
× 3; ii) 4 + 5, PEA 75:25:6, × 3 to give 5 (upper)
and 4 (lower) as well resolved bands; iii) 7,
C6H6:MeOH 9:1, × 3; and iv) 8, PEA 75:25:3
(Rf 0.63).

Compounds 1−3, 5 and 6. UV and MS as lit. [1, 5,
6, 9, 10].

3,6a,9-Trihydroxypterocarpan (4). Diazotised
p-nitroaniline, orange (cf. 1 [1, 10], λmax (nm) EtOH
214 (100%), 230 sh (71%), 283 (42%), 287 (44%),
293 sh (30%), lit. 282 and 287 nm [4]; EtOH + conc.
HCl 213, 230, 240 sh, 250 sh, 283 sh, 288, 292 sh,
319 sh, 336, 353, lit. 335 and 350 nm [4]; EtOH +
NaOH 218, 249, 298. An intense purple/pink colou-
ration (λmax 522 nm) rapidly developed (10−20 sec)
in the presence of aqueous NaOH. MS (rel. int.) 272
3,6α,9-Trihydroxy-10-isopentenylpterocarpan (7)
(sandwicarpin). Diazotised p-nitroaniline, orange (cf. 2 [1, 11]). \(\lambda_{\text{max}} \) (nm) EtOH 212 (100%), 234 sh (37%), 281 (15%), 287 (15%); EtOH + conc. HCl 212, 244, 252 sh, 290, 320 sh, 336, 354; EtOH + NaOH 212, 250, 295. A purple/pink colour did not develop even after prolonged (30 min) exposure of 7 to aqueous NaOH (cf. 4). MS (rel. int.) 340 (M+; 2), 323 (6), 322 (25), 321 (8), 267 (22), 266 (100), 237 (6); PMR (360 MHz, (CD3)2CO, TMS) \(57.34 \) (1 H, d, H-1), 7.03 (1 H, d, H-7), 6.55 (1 H, q, H-2), 6.45 (1 H, d, H-8), 6.30 (1 H, d, H-4), 5.26 (1 H, s, H-1α), 5.23 (1 H, br t, H-13, olefinic), 4.12/4.01 (2H, dd, H-6,6'), 3.23 (2H, d, H-12, methylene), 1.72 (3H, s, methyl), 1.60 (3H, s, methyl). The C-6α multiplet which appears at \(4.24 \) in the PMR ((CD3)2CO) of phaseollidin (2) was absent from the spectrum of sandwicarpin. \([\alpha]_{\text{D}}^\text{289nm} = -278^\circ \) (approx. 0.5 mg in 1 ml MeOH); the absolute configuration of sandwicarpin is thus 6αS; 11αR [1]. Dimethyl ether (9). TLC, UV and MS data as lit. [1].

3-Hydroxy-9-methoxy-10-isopentenylpterocarpan (8)
(sandwicensin). Diazotised p-nitroaniline, bright yellow (cf. 3 [1]). \(\lambda_{\text{max}} \) (nm) EtOH 211 (100%), 234 sh (57%), 281 (28%), 287 (31%); EtOH + NaOH 215, 250 sh, 282 sh, 300 sh (cf. UV maxima of 3-hydroxy-9-methoxypterocarpan [10] and 3-methoxy-9-hydroxypterocarpan, \(\lambda_{\text{max}} \) (nm) EtOH 212, 230 sh, 282, 287; EtOH + NaOH 215, 250 sh, 281 sh, 287, 300 sh); MS (rel. int.) 339 (16), 338 (M+; 94), 337 (6), 323 (3), 295 (11), 284 (9), 283 (46), 282 (100), 281 (53), 267 (6), 161 (21). Pterocarpan 11 could be separated from sandwicensin (8) by Si gel TLC in PEA 75:25:1 (8, \(R_f \) 0.61; 11, \(R_f \) 0.69).

Preparation of 3-methoxy-9-hydroxy-10-isopentenylpterocarpan (11) (3-O-methylphaseollidin). CH3N2 was bubbled (5 min) through a solution of (-)-2 (approx. 1 mg) in CH2Cl2/MeOH (1:4). Work up and Si gel TLC (CHCl3:CCl4, 1:1) gave 3-O-methylphaseollidin (approx. 0.5 mg; \(R_f \) 0.35) together with smaller quantities (approx. 0.3 mg; \(R_f \) 0.68) of the 3,9-di-O-methyl derivative (10). Data recorded for 11 were as follows: diazotised p-nitroaniline, orange (cf. sandwicensin, 8). \(\lambda_{\text{max}} \) (nm) EtOH 211 (100%), 232 sh (57%), 281 (28%), 287 (31%); EtOH + NaOH 215, 250 sh, 282 sh, 300 sh; the MeOH spectrum was unaffected by addition of conc. HCl. MS (rel. int.) 353 (23), 352 (M+; 100), 351 (8), 337 (10), 309 (15), 297 (25), 296 (54), 295 (36), 294 (36), 281 (13), 267 (14), 201 (8), 161 (26), 149 (15), 137 (16).

Acknowledgements

The author thanks R. W. Butters (Tate and Lyle Ltd.) for MS analyses and R. L. Lyne (Shell Research Ltd.) for a sample of 4. Financial support was provided by the Science Research Council.