Herpetriol and Herpetetrol,
New Lignoids Isolated from *Herpetospermum caudigerum* Wall

Mourad Kaouadji *, Jean Favre-Bonvin **, and Anne-Marie Mariotte *

* Laboratoire de Pharmacognosie, UER des Sciences Pharmaceutiques et Biologiques, Université Scientifique et Médicale de Grenoble, Domaine de la Merci, F-38700 La Tronche

** Département de Biologie Végétale, Service de Phytochimie, Université Claude Bernard, 43 Bd du 11 Novembre 1918, F-69621 Villeurbanne

Z. Naturforsch. 34 c, 1129 – 1132 (1979); received May 21, 1979

Herpetospermum caudigerum, Cucurbitaceae, Seeds, Herpetriol, Herpetetrol

Two new compounds derived from coniferyl alcohol have been isolated from *Herpetospermum caudigerum* Wall. Their structures have been established by spectral analysis (UV, PMR, CMR and MS).

Introduction

Herpetospermum caudigerum Wall. seeds endemic in Nepal, contain different new phenolic compounds derived from condensation of several coniferyl units. In preceding papers [1, 2], we reported structural determination of herpetal (1) and herpetotriol (2).

Keeping on our investigation, we have isolated and characterized two new compounds: herpetiol (3)

Reprint requests to M. Kaouadji.

0341-0382/79/1200-1129 $ 01.00/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungformen zu ermöglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.
and herpetetrol (4) respectively generated by trimerisation and tetramerisation of coniferyl alcohol units.

Results and Discussion

The UV spectra data of 3 and 4 are almost identical and suggest unconjugated and substituted aromatic rings frequently observed in lignoids. The mass spectra indicate a supplementary coniferyl unit in 4.

Herpetriol (3)

This compound is given molecular formula C_{27}H_{21}O_2(OCH_3)_3(OH), m/e 538 by the exact mass determination. It effectively leads to a tetra-TMSi derivative and its PMR spectrum shows 3 OCH_3 at δ 3.61, 3.70 and 3.81 ppm; decoupling experiment indicates furthermore:

1 chain: Ar - CH(a) - CH(b) - CH_2(c) OH
 CH(a): δ 6.10 ppm - J 7.5 Hz - d
 CH(b): δ ca. 4 ppm - m *
 CH_2(c): δ 4.28 ppm - m *

1 chain: Ar - CH(d) - CH(e) - CH_2(f) OH
 CH(d): δ 5.34 ppm - J 7 Hz - d
 CH(e): δ 2.80 ppm - m *
 CH_2(f): δ ca. 4.20 ppm - m *

1 chain: Ar - CH(g) - CH(h) - CH_2(i) O
 CH_2(g1): δ 3.32 ppm - J 14 and 4 Hz - dd (g2): δ 2.81 ppm - m *
 CH(h): δ 3.08 ppm - m *
 CH_2(i): δ ca. 4.20 ppm - m *

Chemical shift values of protons in this compound, compared with those of 2 [2] in the same conditions, allow to draw the following partial structure:

![Chemical structure of Herpetriol](image)

This result is also corroborated by analysing mass spectra of compounds 2, 3 and their derivatives: abundant fragment ions, typical of this kind of molecules can be observed as following [3]:

<table>
<thead>
<tr>
<th>R or R'</th>
<th>m/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>151</td>
</tr>
<tr>
<td>CH_3</td>
<td>165</td>
</tr>
<tr>
<td>TMSi</td>
<td>223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R''</th>
<th>m/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>330</td>
</tr>
<tr>
<td>TMSi</td>
<td>446</td>
</tr>
</tbody>
</table>

Shielding of H(d) and H(e), in comparison with H(a) and H(b), indicates that they are not included like previously in a benzo[1,3]dioxole ring but in a furanocyclic one ** with H(h) and H(i). Between the two possibilities of substitution relative to this ring by benzyl radical, the one defined in 5 has to be eliminated on purpose of shift values of CH_2(i) and CH(h).

Benzyl disubstituted radical is characterised in mass spectra by the presence of important and significant ions:

<table>
<thead>
<tr>
<th>R''''</th>
<th>m/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>137</td>
</tr>
<tr>
<td>CH_3</td>
<td>151</td>
</tr>
<tr>
<td>TMSi</td>
<td>209</td>
</tr>
</tbody>
</table>

** Analysis of aromatic protons, possible by using MeOH, confirms that they are 8 and excludes the existence of a second benzo[1,3]dioxole ring.
In fact, the differences in condensation of coniferyl units in 2 and 3 deduced from PMR spectra are completely supported by CMR analysis (see Table); for the compound 3, one notice effectively: endocyclic O-bound \(\text{CH}_2 \) at 60.4 ppm, \(\text{CH}(h) \) at 43.9 ppm and \(\text{CH}_2(g) \) at 33.9 ppm.

Herpetetrol (4)

As for the establishment of 3, formula 4: \(\text{C}_{36}\text{H}_{27}\text{O}_3(\text{OCH}_3)_4(\text{OH})_5 \) is deduced both from measurements by mass spectrometry in the high resolution mode of penta-TMSi and pentamethylated derivatives and from PMR spectrum of the natural product showing 4 \(\text{OCH}_3 \) at \(\delta \) 3.63 (6 H) and 3.81 ppm (6 H). Furthermore, analysis of this last spectrum indicates 10 aromatic protons in the range 6.7 — 6.95 ppm * and:

2 chains: Ar — \(\text{CH}(a) \) — \(\text{CH}(b) \) — \(\text{CH}_2(c) \) OH

\(\text{CH}(a) \): \(\delta \) 6.09 and 6.11 ppm — \(J \) 6.5 Hz — \(d \)
\(\text{CH}(b) \): \(\delta \) ca. 4.00 ppm — \(m \)*
\(\text{CH}_2(c) \): \(\delta \) ca.4.26 ppm — \(m \)*

1 chain: Ar — \(\text{CH}(d) \) — \(\text{CH}(e) \) — \(\text{CH}_2(f) \) OH

\(\text{CH}(d) \): \(\delta \) 5.34 ppm — \(J \) 7 Hz — \(d \)
\(\text{CH}(e) \): \(\delta \) 2.82 ppm — \(m \)*
\(\text{CH}_2(f) \): \(\delta \) ca. 4.20 ppm — \(m \)*

1 chain: Ar — \(\text{CH}_2(g) \) — \(\text{CH}(h) \) — \(\text{CH}_2(i) \) O

\(\text{CH}_2(g) \): \(\delta \) 3.30 ppm — \(J \) 14 and 4 Hz — \(d \)
\(\text{CH}(h) \): \(\delta \) 3.08 ppm — \(m \)*
\(\text{CH}_2(i) \): \(\delta \) ca. 4.20 ppm — \(m \)*

* The study of aromatic protons has been realised, as for 3, in using MeOH.

The presence in CMR spectrum of 10 CH, 6 quaternary C and 8 O-bound C in the range 110 — 150 ppm confirms the existence of 4 aromatic rings how the PMR spectrum suggested; this result allow to keep from hypothesis of a multiple substitution of one or several aromatic rings by a C\(_3\) chain. Chemical shifts (see Table) are comparable with those relative to herpetriol (3).

Even mass spectrum of 4 in EI, CI or FD does not lead to characterize molecular ion (the highest mass observed is \(m/e \) 534 in EI), however fragments at \(m/e \) 137, 151 and 330 typical of skeleton of this kind of compounds are found again. It is only by using the technique CI/D of ionisation we can demonstrate that the molecular ion of the natural compound is quite \(m/e \) 716.

Results given by *Herpetospermum caudigerum*, up to day, show coniferyl units generally condense to form a sequence of benzofuran rings with an Ar(OH, OCH\(_3\)) in the begining. In that case, the joint of C\(_6\) — C\(_3\) links is realised between the propyl chain of a co-
niferyl unit and the aromatic ring of another coniferyl one, as shown in X. When two C$_6$ – C$_3$ units condense by their propyl chain, an “isolated” furan ring is issued from; this occurs at the distal extremity as noticed in 3, 4 and Y.

Experimental

Herpetriol: m. p. = 110 °C, UV λ_{max} nm (e): 214, 230, 278 (11 000) and 285 sh. $\alpha_{D}^{0} = + 72 ^\circ$, (MeOH, $c = 0.38$ mg/ml). PMR and CMR: see text and table.

MS (70 eV): m/e 538 (M^{+}; 7%; 538.218; C$_{30}$H$_{34}$O$_{9}$: 538.218), 520 (M–H$_{2}$O; 28%; 520.208; C$_{29}$H$_{32}$O$_{9}$: 520.2097), 508 (M–MeOH; 42%; 508.205; C$_{29}$H$_{30}$O$_{9}$: 508.2097), 490 (M–H$_{2}$O–MeOH; 58%), 478 (100%; 478.118; C$_{28}$H$_{34}$O$_{5}$: 478.1191), 330 (11%), 298 (58%; 298.1203; C$_{19}$H$_{20}$O$_{5}$: 298.1205), 297 (75%; 297.1127; C$_{18}$H$_{19}$O$_{5}$: 297.1127), 285 (75%; 285.1123; C$_{17}$H$_{18}$O$_{5}$: 285.1127), 205 (66%), 151 (84%; 151.0757 (30%) C$_{9}$H$_{10}$O$_{2}$: 151.0757; 151.0399 (70%) C$_{7}$H$_{7}$O$_{3}$: 151.0395), 137 (100%; 137.0602; C$_{18}$H$_{14}$O$_{4}$: 137.0603).

Permethylated derivative: MS (70 eV): m/e 594 (M^{+}; 98%; 594.281; C$_{45}$H$_{54}$O$_{12}$: 594.283), 562 (100%), 532 (10%), 530 (16%), 379 (16%), 354 (7%), 338 (11%), 312 (24%), 311 (43%), 297 (21%), 219 (22%), 165 (41%), 151 (79%).

TMSi-derivative: MS (70 eV): m/e 826 (27%), 754 (11%), 736 (54%), 664 (16%), 646 (33%), 574 (11%), 527 (8%), 502 (9%), 446 (5%), 438 (19%), 412 (38%), 396 (20%), 369 (30%), 298 (12%), 297 (24%), 277 (40%), 223 (66%), 209 (100%), 179 (42%), 151 (32%), 137 (32%).

Herpetetrol:

UV λ_{max} nm (e): 214, 235 sh., 281 (12 400) and 285 sh. $\alpha_{D}^{0} = + 56 ^\circ$, (MeOH, $c = 0.624$ mg/ml). PMR and CMR: see text and table.

Permethylated derivative: MS (70 eV): m/e 786 (M$^{+}$; 100%; 786.360; C$_{45}$H$_{54}$O$_{12}$: 786.3615), 754 (M–MeOH; 65%), 722 (M–2 MeOH; 32%), 446 (5%), 368 (20%), 311 (30%), 297 (20%), 258 (20%), 256 (20%), 236 (45%), 181 (30%), 165 (28%), 151 (70%).

TMSi-derivative: MS (70 eV): m/e 1076 (10%), 986 (15%), 914 (10%), 896 (5%), 809 (5%), 484 (8%), 437 (10%), 369 (25%), 355 (15%), 297 (17%), 239 (100%), 223 (40%), 209 (100%).

PMR spectra were recorded on a Cameca 250, CMR on XL-100 Varian and mass spectra in CI/D on R-1010 B Ribermag in using reacted gas NH$_3$.

Acknowledgements

We are indebted to Melle Noailly (Faculté de Pharmacie, Marseille) for 250 MHz spectra, to Societé Ribermag (Paris) for mass spectra in CI/D and M. Arpin for critical reading of the manuscript.