
K. H. Grumbach and T. J. Bach
Botanisches Institut, Universität Karlsruhe, Kaiserstraße 12, D-7500 Karlsruhe 1
Z. Naturforsch. 34 c, 941 — 943 (1979) ; received June 5, 1979

Introduction

Different functions of the mode of action of herbicides have been proposed. They inhibit photosynthesis [1] or interfere with the formation of chloroplasts by blocking carotenoid and chlorophyll accumulation [2—6]. The present investigation was performed to study whether four different herbicides (DCMU, bentazone, amitrol, San 6706) affect the incorporation of [2-14C]acetate together with [2-3H]mevalonate in chlorophylls and carotenoids, and was also compared with the activity of HMG-CoA-reductase [7], the key enzyme of the terpenoid pathway, in the organellar and in the microsomal fraction.

Material and Methods

Radish seedlings were grown in bentazone, DCMU, amitrol (10-4 M each) and SAN 6706 (10-5 M) in white light (0.8 mW/cm²). After 6 days [2-14C]acetate and [2-3H]mevalonate were applied for 24 h, chlorophylls and carotenoids were extract-
ed, purified [8, 9], and assayed for radioactivity. The organellar (16 000 × g) and microsomal fractions (105 000 × g) were assayed for HMG-CoA-reductase activity using a modified radioactive test method [10] with increasing amounts of HMG-CoA (radio isotope dilution). Vmax values were calculated by the linear plot method [11].

Results and Discussion

Photosystem II herbicide-treated plants are green, as are control plants, while amitrol and SAN 6706 [5] induce a strong chlorosis resulting in yellow or white leaves. The accumulation of chlorophyll a and b is suppressed by amitrol and SAN 6706, while PS II herbicides mainly affect the formation of chlorophyll a.

Amitrol specifically inhibits the cyclization of lycopene to α- and β-carotene, resulting in the accumulation of lycopene. Besides lycopene, phytoene, phytofluene, neurosporene and γ-carotene were identified. SAN 6706 is thought to inhibit the desaturation reaction in the carotenoid biosynthesis as seen by high amounts of phytoene, DCMU and bentazone induce a shade adaption [12].
Table I. Molspecific radioactivity of Raphanus chlorophylls after 24 h incorporation with [2-14C] acetate and DL-[2-3H]mevalonic acid as precursors.

<table>
<thead>
<tr>
<th>Control</th>
<th>10^{-4} M DCMU</th>
<th>10^{-4} M Bentazon</th>
<th>10^{-4} M Amitrol</th>
<th>10^{-5} M SAN 6706</th>
<th>[3H]DPM/μmol</th>
<th>[14C]DPM/μmol</th>
<th>[3H]/[14C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a</td>
<td>7.22×10^4</td>
<td>8.78×10^4</td>
<td>6.91×10^4</td>
<td>5.39×10^4</td>
<td>62.27×10^4</td>
<td>16.64×10^4</td>
<td>37.4</td>
</tr>
<tr>
<td>Chlorophyll b</td>
<td>6.56×10^4</td>
<td>5.9×10^4</td>
<td>5.84×10^4</td>
<td>6.31×10^4</td>
<td>78.13×10^4</td>
<td>18.21×10^4</td>
<td>30.11</td>
</tr>
</tbody>
</table>

Table II. Molspecific radioactivity of Raphanus carotenoids after 24 h incorporation with [2-14C] acetate and DL-[2-3H]mevalonic acid as precursors.

<table>
<thead>
<tr>
<th>Control</th>
<th>10^{-4} M DCMU</th>
<th>10^{-4} M Bentazon</th>
<th>10^{-4} M Amitrol</th>
<th>10^{-5} M SAN 6706</th>
<th>[3H]DPM/μmol</th>
<th>[14C]DPM/μmol</th>
<th>[3H]/[14C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycopene</td>
<td>208.5×10^5</td>
<td>125.2×10^5</td>
<td>504.7×10^5</td>
<td>213.3×10^5</td>
<td>608.7×10^5</td>
<td>247.5×10^5</td>
<td>2.5</td>
</tr>
<tr>
<td>a-carotene</td>
<td>0.67</td>
<td>0.78</td>
<td>2.00</td>
<td>7.30</td>
<td>356.0×10^5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>β-carotene</td>
<td>154.0×10^5</td>
<td>308.9×10^5</td>
<td>620.0×10^5</td>
<td>308.9×10^5</td>
<td>4356.0×10^5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lutein</td>
<td>23.6×10^5</td>
<td>89.1×10^5</td>
<td>128.3×10^5</td>
<td>29.1×10^5</td>
<td>140.8×10^5</td>
<td>19.0×10^5</td>
<td>7.30</td>
</tr>
<tr>
<td>Violaxanthin</td>
<td>4.3×10^5</td>
<td>4.7×10^5</td>
<td>27.2×10^5</td>
<td>4.4×10^5</td>
<td>43.38×10^5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The very high incorporation of [14C]acetate and [3H]mevalonate in SAN 6706-treated plants Tables I, II coincides with a high activity of HMG-CoA-reductase in the plastid and microsomal fraction (Fig. 1). In plants treated with DCMU, bentazon and amitrol, the enzyme activity of the microsomal fraction is strongly decreased, but that of the plastid fraction is nearly the same as in untreated plants.

Incorporation experiments with [2,14C]acetate and [2,3H]mevalonate reveal that DCMU and benta-zone-treated plants incorporate acetate at a much lower rate than amitrol, SAN 6706 and control-plants. Mevalonate was incorporated in chlorophyll a and b in the herbicide-treated plants to the same extent as in control plants, except for SAN 6706.
treated plants. The latter show the highest incorporation rate into chlorophylls and carotenoids, indicating a very high biosynthetic capacity. In spite of this, their pigment content is very low. This indicates that SAN 6706 treated plants can synthesize but not accumulate chlorophylls and carotenoids, possibly since other structural components of the thylakoid are missing.

The observation that 14C-label from the acetate was only found in lycopene and β-carotene but not in α-carotene and xanthophylls (Table II) suggests that β-carotene is present in the chloroplast in two different pools of different biosynthetic pathways.

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft to Prof. Dr. H. Lichtenthaler is gratefully acknowledged.

mers in Higher Plants, p. 96, Botanical Institute, Karlsruhe 1976.