Hill-Activity and P700 Concentration of Chloroplasts Isolated from Radish Seedlings Treated with -Indoleacetic Acid, Kinetin or Gibberellic Acid

Claus Buschmann and Hartmut K. Lichtenthaler
Botanisches Institut, Universität Karlsruhe

(Z. Naturforsch. 32c, 798 – 802 [1977]; received March 22/July 4, 1977)

Hill-Activity, Indoleacetic Acid, Kinetin, Gibberellic Acid, Chloroplast Development

The Hill-activity (reduction of DCPIP or methylviologen) and the concentration of P700 were studied in chloroplasts isolated from cotyledons of radish seedlings (Raphanus sativus L. Saxa Treib), which had been grown with the addition of β-indoleacetic acid (IAA), kinetin, or gibberellic acid.

1) The photosynthetic activity of young chloroplasts from 3 day old Raphanus seedlings is very high (c. 180 μmol O₂/mol chlorophyll*h) and decreases continuously thereafter with increasing age. The steady state Hill-activity is reached after 8 to 10 days (values of 55 to 50 μmol O₂/mg chlorophyll*h).

2) Chloroplasts from plants treated with IAA or kinetin not only exhibit higher plastoquinone levels 1-5, but also a higher P700-content and a higher Hill-activity. The promotion effect is more pronounced with kinetin (+36 to 40%) than with IAA (+12 to 17%).

3) Gibberellic acid has a different effect on composition and activity of chloroplasts. In younger seedlings the Hill-activity appears to be somewhat stimulated, without promotion effect on plastoquinone 2 or P700 concentration. After 10 days GA3-treated plants show signs of chlorosis combined with a strong decrease in photosynthetic activity.

4) The data clearly demonstrate that the composition and activity of the photosynthetic apparatus are under phytohormone control. IAA and even better kinetin promote the light induced formation of pigment systems and electron transport chains.

Introduction

Phytohormones are known to control many development processes in plants. They also affect the development of plastids. IAA and cytokinins were found to give rise to an increased number of chloroplasts per cell in tobacco leaf discs 8. The formation of thylakoids and grana can be stimulated by cytokinins 4-6 and GA3 7. Many authors also describe a rise in CO₂ fixation rate induced by spraying of plants with IAA 8-10, cytokinins 11, 12, or GA3 10, 11, 13-15. Photophosphorylation of chloroplasts from treated plants is stimulated by cytokinins 16, 17, by GA3 16-18, decreased by IAA 16, 18 and GA3 10 or unchanged GA3 19.

The data available in literature are thus partly contradictory and do not allow for a general conclusion to be drawn concerning the influence of phytohormones on the photosynthetic activity. Yet it appears that the effect of phytohormones is age dependent and does change during the development of seedlings. From this it is clear that only kinetic studies can evaluate the role of phytohormones on the formation of the photosynthetic apparatus.

The effect of phytohormones on chloroplast prenyllipid formation in Raphanus seedlings has carefully been studied. IAA 1 or kinetin 2 treatment promotes chlorophyll accumulation. Enhancement of chlorophyll formation induced by cytokinins has also been described in other plants 6, 17, 20, 21. GA3 application in turn causes a decrease in chlorophyll content after some days 14, 15, 17, 22-24, which has also been shown in Raphanus seedlings 2. IAA and kinetin in Raphanus seedlings stimulate the accumulation of plastoquinone-9 to a much higher extent than that of chlorophyll 1, 2. Since plastoquinone-9 is a basic functional component of the endogenous electron transport chain, it was concluded that IAA and kinetin may increase the number of photosynthetic electron transport chains and may also influence the size of the photosynthetic units 1, 2. This should then result in a higher photosynthetic activity of chloroplasts.

Abbreviations: DCPIP, Dichlorophenolindophenol; GA₃, Gibberellic Acid; IAA, β-indoleacetic acid; K₁, phylloquinone, vitamin K₁; P700, chlorophyll α₁.

Requests for reprints should be sent to Prof. Dr. H. K. Lichtenthaler, Universität Karlsruhe, Kaiserstrasse 12, D-7500 Karlsruhe.
lower photosynthetic activity on a chlorophyll basis. To test these hypotheses we have investigated the Hill-activity of isolated chloroplasts from 3 to 8 day old Raphanus seedlings, which were treated with IAA, kinetin and GA₃. In addition to this we have determined the concentration of P₇₀₀ as a measure for the size of photosystem I.

Methods

Radish seeds (Raphanus sativus L. Saxa Treib) were soaked in water for 90 min and then grown on a 10% van der Crone nutrient solution²⁵ (22 °C, relative humidity about 60%). After a dark period of one day the seedlings were placed into the light (‘Fluora’ lamps, 7500 mWatt/m²). β-indoleacetic acid, kinetin and gibberellic acid if used were included in the nutrient solution in a concentration of 5.7, 9.3 and 28.9 µM, respectively. Cotyledons of 3, 5, 8, and 10 days old seedlings were collected and the chloroplasts were isolated in a buffer containing 0.2 M saccharose, 0.05 M Tris/HCl (pH 8), 0.01 M NaCl, and 0.005 M MgCl₂. The Hill reaction with dichlorophenolindophenol (33 µM) was determined spectrophotometrically and that with methylviologen (0.2 mM) polarographically. NH₄Cl, when added as uncoupler, was applied directly before the Hill reaction measurements in a concentration of 10⁻³ M. The concentration of P₇₀₀ was calculated (ε = 6.4 × 10⁻⁴ 1×mol⁻¹×cm⁻¹) from spectra taken after chemical oxidation and reduction²⁷. The chlorophyll content was determined according to Arnon²⁸ and used as a reference point.

Results

Raphanus seedlings grown without the addition of phytohormones exhibit after 8 days hypocotyls of up to 5 cm length. The cotyledons are fully green after 24 h exposure to continuous white light. The largest increase in cotyledon area and volume can be seen between the 2nd and the 3rd day of germination. The elongation of hypocotyls is especially pronounced between the 3rd and 4th day after germination. Treatment with IAA has little influence on the appearance of the seedlings, whereas kinetin induces shorter hypocotyls and roots as well as somewhat smaller but thicker leaves. Application of GA₃ increases the germination rate of seeds and results in slightly longer hypocotyls (up to 20%) than in the controls. There is no visible effect on cotyledon area.

<table>
<thead>
<tr>
<th>Age of plants</th>
<th>DCPIP-Reduction</th>
<th>Control</th>
<th>+ GA₃</th>
<th>+ IAA</th>
<th>+ Kinetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days</td>
<td>174</td>
<td>178</td>
<td>180</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>5 days</td>
<td>88</td>
<td>95</td>
<td>94</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>8 days</td>
<td>51</td>
<td>56</td>
<td>56</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>8 days + NH₄Cl</td>
<td>65</td>
<td>78</td>
<td>86</td>
<td>139</td>
<td></td>
</tr>
</tbody>
</table>

Chloroplasts could easily be isolated from controls and the phytohormone treated plants. The Hill-activity of Raphanus chloroplasts decreases with increasing age of the seedlings. This is valid for controls and the plants treated with IAA and kinetin (Table I). IAA and kinetin treated plants show higher Hill-activity rates than control plants in all cases, both for DCPIP and methylviologen (Table I). The promotion of Hill-activity is significant for kinetin (+30 to 45%) and smaller in chloroplasts of IAA treated plants (+12 to 16%).

Application of GA₃ yields slightly higher Hill-activity rates, which are similar to those in IAA treated plants. After 8 days the Hill-activity reaches a steady state value of about 51 which is maintained thereafter in controls and in plants treated with IAA and kinetin. In chloroplasts of GA₃ treated plants we found, however, a sharp drop in Hill-activity from the 8th to the 10th day (−30%), which parallels a partial breakdown of chlorophylls²⁹.

To exclude the possibility that the promotion of Hill-activity in chloroplasts from phytohormone treated plants is due to uncoupling of photophosphorylation, we have added the phytohormones in concentrations of up to 0.5 mM to the chloroplasts from control plants. Even after incubation times of up to 30 min we found no influence on the Hill-activity (Table II). In addition to this we have used ammonium chloride as uncoupler, which gave
higher Hill-activity rates in all cases. The differences in Hill-activity found here between the chloroplasts of control plants and those of phytohormone treated plants were maintained even after uncoupling.

In order to obtain some information as to whether or not the phytohormones may also change the size of the photosynthetic units we have comparatively determined the P700-concentration in 8 day old Raphanus seedlings (Table III). The level of P700 per total chlorophyll is similarly increased as is the Hill-activity in both IAA and kinetin treated plants. Again the promotion induced by kinetin is more pronounced than that of IAA. GA₃ does not change P700-concentration in germinating Raphanus seedlings.

Since the phytohormones were applied to the seeds from onset of germination (via the nutrition medium), they had direct contact with the cotyledons for several days. We thus assumed that the effects, described here, are due to a direct phytohormone action within the cotyledons. In order to prove this assumption, we have applied the phytohormones in petri dishes directly to the cotyledons, which were isolated from 3 day old etiolated Raphanus seedlings. After 2 days of continuous illumination we found in the phytohormone-treated cotyledons with regard to the photosynthetic apparatus the same effects as seen in the whole plants. The formation e.g. of plastoquione-9 was promoted by 12% (IAA) and 26% (kinetin) and that of 2-tocopherol depressed by 28% (IAA) and 35% (kinetin). Furthermore the Hill-activity of isolated chloroplasts with DCPIP and methylviologen was increased by 12% to 16% (IAA) and 26% to 29% (kinetin). This and the other prenyllipid data e.g. changed ratios of chlorophyll a/b and xanthophylls to carotenes indicate that the phytohormones acted within the cotyledons.

Discussion

The Hill-activity of Raphanus chloroplasts decreases in all seedlings with increasing chlorophyll content and age of the plant. This has been shown for other plants too and is due to the increasing amount of chlorophyll built into the antenna of the young thylakoids. Photosynthetic reaction centers are known to be formed first upon illumination and the thylakoids exhibit soon fully photosynthetic function though they are not yet fully loaded with chlorophyll. This gives rise to the initial high Hill-activity rates, which are expressed on a chlorophyll basis.

When given to the germinating Raphanus seedlings, kinetin and to a lower degree also IAA and GA₃ result in the formation of chloroplasts with higher Hill-activity rates than those of control plants. Kulandaivelu and Gnanam found a higher Hill-activity due to uncoupling of photophosphorylation, when IAA and GA₃ were given to chloroplasts of Dolichos lab lab L. The possibility that the phytohormones applied to the Raphanus plants via the nutrition medium accumulate in the young chloroplasts and may increase Hill-activity by uncoupling has, however, been excluded for Raphanus seedlings. The differences in photochemical activity found here between chloroplasts from controls and phytohormone treated plants were still to be seen even after uncoupling with NH₄Cl. Furthermore the phytohormones themselves had no uncoupling effects on Raphanus chloroplasts.

The differences in Hill-activity rates of phytohormone treated plants described here are correlated with a different chemical composition of thylakoids. Thus chloroplasts from IAA and kinetin treated Raphanus plants possess a higher amount of the potential electron carriers plastoquione-9 and phyloquinone K₁ and a lower level of carotenoids and 2-tocopherol than control plants (Table IV).
The function of plastoquinone-9 as terminal electron acceptor of photosystem II is well established. The functional site of the naphthoquinone K$_1$ in the photosynthetic electron transport is not yet known. Its concentration corresponds to that of other components of the electron transport chain such as cytochrome f or P700. From recent work with bromene-naphthoquinones a position near photosystem II and the quencher Q is postulated for Hill-activity with methyl viologen. Phylloquinone K$_3$, Plastoquinone-9, a-Tocopherol, Carotenoids, and phytol contents on a chlorophyll a basis indicate together with the increased P700 concentration that the number of reaction centers may be increased too by application of IAA and kinetin to the developing plant. The percent increases in Hill-activity rate and P700 content are in fairly good correspondence for both IAA and kinetin treated plants.

GA$_3$ when given to the growing plant acts in a different way to IAA and kinetin. It may stimulate Hill-activity in the first 8 days, but there is no increase of P700-concentration and even a decrease in plastoquinone content. The considerable loss of chlorophyll and photosynthetic activity in 10 d old GA$_3$ treated Raphanus seedlings indicates that GA$_3$ application — in contrast to controls and IAA or kinetin treated plants — results in an early senescence. Since the photosynthetic apparatus undergoes a steady turnover and rebuilding, this means that GA$_3$ does not allow the reformation of thylakoids under steady state conditions. The data reported here also indicate that GA may have stimulatory and inhibitory effects on the photosynthetic apparatus, which are time dependent.

Similar differences in chemical composition and photochemical activity of thylakoids as described here in IAA and kinetin treated plants are also found between plants grown at high light intensity or in blue light and plants grown at low light intensity or red light. It is of interest in this respect that the levels of auxins and cytokinins inside the plant are under light and phytochrome control. Furthermore there is a close relationship between blue light and the endogenous cytokinin, an auxin levels and red light and certain GA$_3$ effects.

This work was sponsored by a grant from the Deutsche Forschungsgemeinschaft which is gratefully acknowledged. We wish to thank Mr. G. Burkard for the work with isolated cotyledons.

1 V. Straub and H. K. Lichtenthaler, Z. Pflanzenphysiol. 70, 34 [1973].
2 V. Straub and H. K. Lichtenthaler, Z. Pflanzenphysiol. 70, 308 [1973].
5 D. A. Stetler and W. M. Laetsch, Science 149, 1387 [1965].
10 G. Kulandaivelu and A. Gnanam, Physiol. Plant 33, 234 [1975].
14 R. Marcelle and G. Oben, Acta Horticulucrae 34, 55 [1973].
22 V. I. Artamonov, Fiziol. rast. 13, 424 [1966].
29 H. Strnadovä and Z. Sestäk, Photosynthetica 8, 130 [1974].