The Influence of Oxygen on Nitrite Reduction in a Reconstituted System

Hartmut Spiller, Gerhard Bookjans, and Peter Böger

Department of Biology, University of Konstanz

(Z. Naturforsch. 31c, 565—568 [1976]; received July 5, 1976)

Oxygen, Nitrite Reduction, Cell-Free Algal System

Data regarding the role of oxygen in nitrite reduction are presented. In an NADPH-generating system including homogeneously purified ferredoxin-NADP reductase, ferredoxin (or flavodoxin) and nitrite reductase from the alga Bumilleriopsis filiformis, oxygen and nitrite can be reduced simultaneously. In air, rates of 1.2 μmol nitrite reduced·min⁻¹·mg⁻¹ nitrite reductase are obtained, which are physiologically feasible. Ferredoxin is inhibited non-competitively by oxygen during nitrite reduction. Oxygen uptake due to the oxidase reaction of ferredoxin-NADP reductase mediated by flavodoxin from Chlorella fusca and ferredoxin from Bumilleriopsis involves superoxide and is inhibited by the nitrite reducing system.

Introduction

Nitrite reduction in plants is closely connected to the photosynthetic electron transport but can also proceed as an enzymatic dark reaction using NADPH. Fd-NADP reductase, nitrite reductase and ferredoxin *.

Materials and Methods

Fd and Fd-NADP reductase (EC 1.6.7.1, formerly 1.6.99.4) from autotrophically grown Bumilleriopsis filiformis, and flavodoxin from Chlorella fusca were isolated as described previously. Isolation and some properties of nitrite reductase (EC 1.7.7.1) from Bumilleriopsis are reported elsewhere.

All oxygen measurements were carried out with a Clark type electrode mounted in a thermostated water-jacketed cell of 2—2.7 ml volume with adjustments for anaerobic incubation. Reaction temperature was 24 °C unless stated otherwise. NADPH oxidation was performed in elongated 1 ml cuvettes flushed with argon purified by passing through Fieser's solution, 5% KOH and dried Silica gel and was followed by the 340 nm absorbance change with a Hitachi double-beam spectrophotometer (mod. 124). Alternatively, the oxidation of NADPH by oxygen and by nitrite was carried out in 1.9 ml conical flasks closed by a rubber stopper and equipped with a syringe outlet. For nitrite determination, aliquots from samples were removed with a gas-tight Hamilton syringe (50 μl). Nitrite was determined after dilution and oxidation of surplus NADPH with phenazine methosulfate.

Activity of nitrite reductase was determined as described elsewhere.

Protein determination was done according to Lowry et al. NH₃ was measured after alkalization with 0.1 N NaOH by means of an NH₃ electrode (Orion, type 95—100) using a calibration curve. ICDH, catalase and pyridine nucleotides were purchased from Boehringer, SOD (from bovine blood; E 1.15.1.1) from Sigma. All other reagents of analytical grade were obtained from Merck.

Requests for reprints: To anyone of the authors, Lehrstuhl Physiologie und Biochemie der Pflanzen, Fachbereich Biologie der Universität Konstanz, Postfach 7733, D-7750 Konstanz.

* Abbreviations: Fd, ferredoxin; FdL, flavodoxin; IC/ICDH, isocitrate/isocitrate dehydrogenase; NR,nitrite reductase; SOD, superoxide dismutase; Tris, tris(hydroxymethyl)-aminomethane (buffer, adjusted with HCl).
Results and Discussion

Reduced ferredoxin is regenerated via the primary acceptor of photosystem I in photosynthetic electron transport and is considered also to act as physiological donor for nitrite reductase. Regeneration of reduced Fd is also possible by coupling the NADPH-producing system of IC/ICDH to Fd-NADP reductase. Since NADPH or IC will not reduce NO$_2^-$ chemically and NADPH is maintained at a constant level, we chose this system as a convenient method to study nitrite reduction in the presence of oxygen (Fig. 1).

It is known that NADPH in the presence of Fd-NADP reductase and Fd reduces O$_2$ to peroxide. Fig. 1 shows the influence of this reaction on NO$_2^-$ reduction. Catalase was included to avoid secondary oxidations by peroxide. NO$_2^-$ is reduced both in the presence and absence of SOD at constant rates for over 45 min. Due to the oxidase reaction the assay sample was depleted of O$_2$ within 15 min (dotted line). After O$_2$ depletion the rate of NO$_2^-$ reduction was enhanced and attained a constant value of 4.63 µmol NO$_2^-$ reduced per 10 min and mg NiR as compared to 2.1 µmol during the first 15 min. Addition of SOD decreased the rate by approx. 20%, which cannot be explained at present. As demonstrated further (Table I, last column) NO$_2^-$ is reduced in stoichiometric amounts to NH$_4^+$, which was found also with the NADPH-generating system (see legend of Fig. 1). Both systems have to be complete to achieve NO$_2^-$ reduction. This indicates that in contrast to earlier reports catalytic amounts of NADPH, NiR, and Fd-NADP reductase are amply sufficient to maintain physiological rates of NH$_4^+$ production.

Apparently, there is no need for the complete exclusion of O$_2$ during nitrite reduction under physiological conditions. Hence we investigated the dependence on NADP concentration of enzymic reduction of NO$_2^-$ in our reconstituted system with a distinct amount of oxygen present at start in the closed vessel (Table I). NO$_2^-$ was not reduced at the lowest NADPH concentration used, whereas higher concentrations of NADPH resulted in an increased reduction of NO$_2^-$.

<table>
<thead>
<tr>
<th>NADPH at start [µmol]</th>
<th>NO$_2^-$ consumed [µmol]</th>
<th>Oxygen at start [µmol]</th>
<th>NADPH at the end of reaction [µmol]</th>
<th>NH$_4^+$ produced [µmol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>—</td>
<td>0.51</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
<td>0.51</td>
<td>0.61</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
<td>0.51</td>
<td>2.72</td>
<td>0.35</td>
</tr>
<tr>
<td>10</td>
<td>0.51</td>
<td>0.51</td>
<td>6.90</td>
<td>0.49</td>
</tr>
</tbody>
</table>
cording to the equation

\[a = 3b + 2c \]

where \(a \) denotes \(\mu \text{mol NADPH oxidized} \), \(b \) and \(c \) \(\mu \text{mol NO}_2^- \) and \(O_2 \) reduced, or fractions thereof, to ammonia and to water. This balance rests on the assumption that 6 or 4 electrons are required to completely reduce 1 molecule of nitrite or oxygen, respectively. The experimental data of Table I support this stoichiometry.

Fig. 1 demonstrates a partial inhibition of \(NO_2^- \) reduction by oxygen. Since reduced Fd can be regarded as substrate for the reduction of both \(O_2 \) and \(NO_2^- \), the mode of inhibition was checked by varying the concentration of Fd (Fig. 2). The double reciprocal plot exhibits non-competitive inhibition of nitrite reduction by \(O_2 \). The Fd concentration required for half maximum velocity remained unchanged at 2.5 \(\mu \text{M} \), whereas the maximum rate was decreased by 21% v/v \(O_2 \) from 1.2 to 0.85 \(\mu \text{mol NO}_2^- \) per min and mg NiR. This effect of \(O_2 \) on \(NO_2^- \) reduction can be interpreted as decrease of the concentration of reduced ferredoxin available for nitrite reduction, rendering interaction of \(NO_2^- \) and \(O_2 \) at NiR rather unlikely.

These data, instead, point to Fd-NADP reductase as the key enzyme responsible for \(O_2 \) uptake, diverting electrons to either NiR or to oxygen. The oxidase activity of the flavoprotein itself is quite low (Bookjans, to be published), but can be greatly stimulated by ferredoxin.

If both \(O_2 \) and \(NO_2^- \) draw on the pool of reduced low potential carriers through either the oxidase activity of Fd-NADP reductase or NiR, then \(NO_2^- \) reduction ought to have some influence also on \(O_2 \) uptake. Evidence for this proposition is presented in Fig. 3 using flavodoxin.

Addition of 1.5 nmol Fld increased the native activity more than 3-fold, whereas addition of SOD (from bovine blood or \(Bumilleriopsis \)) diminished the rate significantly, suggesting the involvement of superoxide. Decreasing the maximum rate to half by catalase indicates that oxygen reduction mediated by Fld (or Fd) is carried on to \(O_2^2^- \). Addition of 0.3 nmol NiR exhibited no change, but subsequent addition of \(NO_2^- \) lowered the rate of \(O_2 \) uptake (Fig. 3, tracing A). When the order of NiR and \(NO_2^- \) addition was reversed (tracing B), then again only further addition of NiR induced a pronounced decrease. This demonstrates that inhibition of \(O_2 \) uptake requires both \(NO_2^- \) and NiR of the \(NO_2^- \) reducing system. Inhibition of \(O_2 \) uptake by NiR can be increased by varying the amount of Fd-NADP reductase or NiR (not shown); Fd produces similar effects in this system. Generation of \(O_2^2^- \) was also demonstrated when NADPH was produced by a glucose-6-phosphate/dehydrogenase system.

Evidence presented herewith, suggesting that \(NO_2^- \) and \(O_2 \) reduction occur concurrently, with Fd or Fld as electron carriers, is corroborated by several observations reported: a) intact and broken chloroplasts are capable of reducing \(NO_2^- \) with the
oxygen-evolving apparatus still intact1,4, b) oxygen appears to be a prerequisite for the proper control of the NADPH/ATP ratio17, c) during nitrite reduction in chloroplasts most of the NADP is in the reduced state18, d) the decrease of the primary fluorescence peak by NO_2^- in algae occurs also in air, indicating electron transport partially due to NO_2^- reduction. The physiological significance of our findings may well be another regulatory function of Fd-NADP reductase in connection with photosynthetic nitrite reduction, in addition to reduction of NADP and O_2 as indicated by Allen16, Heber and Kirk17, maintaining a balance between nitrogen and carbon metabolism by directing reducing power towards oxidized nitrogen when NADPH and carbohydrates are in excess.

The work was funded by the Deutsche Forschungsgemeinschaft through its Sonderforschungsbereich No. 138.

\begin{flushright}
2 A. Paneque, J. M. Ramirez, F. F. Del Campo, and M. Losada, J. Biol. Chem. 239, 1737–1741 [1964].
3 C. A. Neyra and R. H. Hageman, Plant Physiol. 54, 480–483 [1974].
6 P. Böger, Z. Pflanzenphysiol. 61, 85–97 [1969].
7 P. Böger and U. Schlue, Weed Res. 16, 149–154 [1976].
8 P. Böger, Planta 92, 105–128 [1970].
14 P. Böger, Planta 99, 319–338 [1971].
15 S. Nakamura and T. Kimura, J. Biol. Chem. 247, 6462–6468 [1972].
17 U. Heber and M. R. Kirk, Biochim. Biophys. Acta 376, 135–150 [1975].
18 B. R. Grant, R. LaBelle, and B. S. Mangat, Planta 106, 181–184 [1972].
\end{flushright}