Abstracts

like TRH are best suited for the structure elucidation by mass spectrometry (see Fig. 2)\(^1\). Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

de-9. Applying \(^{13}\text{C}\)-NMR spectroscopy the real structure of TRH in water solutions could be elucidated: The hor-

Synthesis of Gonadotropin-Releasing Hormones

Wolfgang König and Rolf Geiger
Farbwerke Hoechst AG

Out of the peptide hormones produced in the hypothalamus two with a stimulating effect (TRH and LH-RH) and two with an inhibiting effect (MIF and GIF) have so far been elucidated in their structure, with subsequent confirmation. A great many data of the two releasing hormones TRH and LH-RH is available. Without detailing their analogues the syntheses of these two substances are discussed below.

The final product or an intermediate product of the 16 classic and 5 Merrifield TRH syntheses known to us have mostly to be purified by column chromatography or counter-current distribution. As such purifications encounter difficulties during the production of larger quantities, easier procedures for purification of the peptide are preferred. Since TRH itself cannot be crystallized, intermediate products with good tendency for crystallization should be obtained. Column purification could be dispensed with in various TRH syntheses, introducing the MbH residue (4,4′-dimethoxybenzhydryl residue) into the amide function. This was possible by the good crystallization properties of the intermediate product and the smooth splitting of the protective groups.

This procedure is less suited for LH-RH with its complicated sequence, because tryptophan and tyrosine, which are sensitive to cations, would be damaged during acid splitting of the protective groups. Even in a synthesis with minimum protection aiming at unprotected LH-RH many problems arise. For example, dioxyperazine is formed from H-Pro-Gly-NH\(_2\) while ammonia is split off. The cheap Z-arginine or Z-Leu-Arg (HCl) -OH cannot be coupled with H-Pro-Gly-NH\(_2\), because the secondary amine in the pyrrolidine ring shows such a strong alkaline reaction that it deprives the guanidino group of protone protection. Intramolecular lactam formation can be observed. The catalytic hydrogenation of peptides containing tryptophan seems to be dangerous.

In addition to the side reactions described, the missing crystallizability and the reactivity of the unprotected third functions of arginine, serine, tyrosine, tryptophan, and histidine lead to a strongly contaminated final product which has to be purified by means of partition chromatography.

In order to investigate the synthesis of a properly protected LH-RH-chain, splitting conditions at the intact LH-RH are simulated. The by-products appearing during this procedures, are recorded.

2. J. D. Green and G. W. Harris, J. Physiology 108, 359 [1949].