A Simple and Convenient Route to Arylxenon(II) Tetrafluoroborates

H.-J. Frohn*, H. Franke#, and V. V. Bardin

aFachgebiet Anorganische Chemie, Gerhard-Mercator-Universität Duisburg,
Lotharstr. 1, D-47048 Duisburg, Germany
bInstitute of Organic Chemistry, 630090 Novosibirsk, Russia

Reprint requests to Prof. Dr. H.-J. Frohn.
Fax: (+49) 203 379 2231. E-mail: frohn@uni-duisburg.de

Z. Naturforsch. 54 b, 1495–1498 (1999); received October 4, 1999

Xenon Difluoride, Fluorinated Aryldifluoroboranes, Fluorinated Arylxenon(II) Salts, Fluorine-Aryl Substitution, Thermal Decomposition

An improved synthesis of arylxenon(II) salts is reported. The series of fluoro-containing aryloxenon(II) tetrafluoroborates (aryl = C₆H₅, 2,3,4,5-C₆H₄F₄, 3,4,5-C₆H₂F₃, and 3,5-C₆H,F₄) are prepared by the reaction of xenon difluoride with the corresponding aryldifluoroboranes. The salts [C₆F₅Xe] [BF₄] and [2,3,4,5-C₆F₅Xe][BF₄] are long-term stable in anhydrous HF (aHF) solution at rt, while [3,4,5-C₆H₂F₃Xe] [BF₄] and [3,5-C₆H,F₄Xe] [BF₄] are converted into 1,2,3,5-tetrafluorobenzene and 1,3,5-trifluorobenzene, respectively, within a few hours.

Introduction

In 1989 the first preparation of arylxenon(II) salts, pentafluorophenylxenon(II) pentafluoro-phenyl(fluoro)borates, by reaction of tris(pentafluorophenyl)borane and xenon difluoride was reported [1, 2].

(C₆F₅)₃B + XeF₂ CH₂Cl₂ or MeCN

[CF₃Xe] [C₆F₅]BF₄₋ (1)

Later this procedure was extended to some other arylxenon(II) salts [3 - 6]. However, the preparation and purification of boranes with electron-withdrawing substituents in the aryl group is a delicate process owing to the high tendency for tetraarylborate formation and the moisture-sensitivity of the boranes. A disadvantage of the traditional synthetic approach is the presence of nucleophilic aryldifluoroborate anions in combination with the electrophilic arylxenon(II) cation. This fact makes it necessary to convert arylxenon(II) aryldifluoroborates into salts with less nucleophilic anions like [AsF₆]⁻ in order to increase the thermal stability. Furthermore, it should be mentioned, that only one third of the aryl groups Ar is transferred to Xe(II) (eq. (2)).

Ar₃B + XeF₂ CH₂Cl₂ → [ArXe][Ar₂BF₂] (2)

The alternative pathway to [ArXe] [OS(O)₂CF₃] by reaction of ArH with XeF₂ in the CF₃C(O)OH - CF₃S(O)₂OH - CCl₃F system at -40 °C resulted in low yields of arylxenon(II) compounds and, in many cases, in the non-regiospecific replacement of hydrogen by xenon(II) [7].

We have elaborated a new reaction sequence for the preparation of organoxenon(II) tetrafluoroborates based on the interaction of xenon difluoride with organyldifluoroboranes generated in situ from the corresponding potassium aryldifluoroborates and boron trifluoride in an inert solvent [8]. We present now the fruitful application of aryldifluoroboranes for the synthesis of some fluoro-containing arylxenon(II) tetrafluoroborates. Most of the aryl groups under investigation have the presence of hydrogen atom(s) in ortho-position(s) in common.

Results and Discussion

The general procedure of the improved synthesis consists of the sequential defluoridation of K [ArBF₃] by BF₃ in CH₂Cl₂ at -40 to -50 °C, the separation of the dichloromethane solution of ArBF₂ from solid K [BF₄] followed by the reaction of the aryldifluoroborane with XeF₂ which results in the precipitation of the desired arylxenon(II) tetrafluoroborate.

K[ArBF₃] +BF₃ → K[BF₄]

ArBF₂ +XeF₂ CH₂Cl₂ → [ArXe][BF₄] (3)

0932-0776/99/1200-1495 $ 06.00 © 1999 Verlag der Zeitschrift für Naturforschung, Tübingen - www.znaturforsch.com
Pentafluorophenylxenon(II) (1), 2,3,4,5-tetrafluorophenylxenon(II) (2), 3,4,5-trifluorophenylxenon(II) (3), and 3,5-difluorophenylxenon(II) (4) tetrafluoroborates were prepared in high yields. It should be mentioned that aryl dichloroboranes can also be used as starting materials. For instance, salt 1 was obtained by the reaction of an excess of xenon difluoride with a mixture of C$_6$F$_5$BCl$_2$ and C$_6$F$_5$BF$_2$.

\[
1 (C_6F_5BCl_2 + C_6F_5BF_2) + 1.9 \text{XeF}_2 \xrightarrow{\text{CH}_2\text{Cl}_2} [C_6F_5\text{Xe}] [\text{BF}_4] + \text{Cl}_2 + \text{Xe}
\]

However, the use of chloroboranes has no advantage over the substrates Ar$_3$B or C$_6$F$_5$BF$_2$ because 50 % of xenon difluoride is lost in a preceding redox reaction.

1 and the new hydrogen-containing arylxenon compounds 2, 3 and 4 are white solids. The latter show reduced stability with diminishing number of fluorine atoms in the aromatic moiety. Indeed, 1 and 2 did not decompose at rt in a dry argon atmosphere over one year. Compound 3 remained unchanged at least for 4 d whereas 4 underwent total decomposition within a few hours under the same conditions. The suspensions of the arylxenon tetrafluoroborates 3 and 4 (no ortho-fluorine atoms) in dichloromethane showed the lowest thermal stability. Both salts are converted completely into 1,2,3,5-tetrafluorobenzene (5) or 1,3,5-trifluorobenzene (6), respectively, within a few hours.

The fluoro-containing arylxenon(II) tetrafluoroborates 1 - 4 are soluble in basic MeCN as well as in strong anhydrous acids. The solution of 1 in MeCN slowly decomposes at rt similarly to the corresponding hexafluoroarsenate [6] to give mainly C$_6$HF$_5$, (C$_6$F$_5$)$_2$ and traces of C$_6$F$_6$ after 23 d. The decomposition of the trifluorophenylxenon salt 3 was complete within 18 h under the same conditions yielding a complex mixture which contains 1,2,3,5-tetrafluorobenzene. 4 remained unchanged in an CD$_3$CN - EtCN solution at -60 °C for 7 h, but was converted into 1,3,5-trifluorobenzene (6) at -30°C.

Solutions of the tetra- and pentafluorophenylxenon(II) salts 2 and 1 in acidic media were significantly more stable than in basic media. No changes of these salts were detected in the anhydrous HF (aHF) solutions at rt during 13 - 16 d. The solution of the related [C$_6$F$_5$Xe] [AsF$_6$] salt in HOTf could be stored for four years at rt without decomposition. In contrast to the stability of arylxenon(II) salts with fluorine in ortho-position, 3 was converted in aHF quantitatively into tetrafluorobenzene 5 within 12 h. It should be emphasized that the total decomposition of 3 in HOTf solution at rt resulted in the formation of a mixture of 5 and 3,4,5-trifluorophenyl triflate (7) (18 : 82).

\[
[3,4,5-C_6H_2F_3Xe] [\text{BF}_4] \xrightarrow{\text{aHF or CH}_2\text{Cl}_2, \text{rt}} \text{3}
\]

\[
1,2,3,5-C_6H_2F_4 + \text{BF}_3 + \text{Xe}
\]

\[
[3,4,5-C_6H_2F_3Xe] [\text{BF}_4] \xrightarrow{\text{CF}_3\text{SO}_3\text{OH} \rightarrow \text{BF}_3, \text{-Xe}} \text{5}
\]

\[
1,2,3,5-C_6H_2F_4 + 3,4,5-C_6H_2F_3\text{OS(O)}_2\text{CF}_3
\]

\[
[3,5-C_6H_3F_2Xe] [\text{BF}_4] \xrightarrow{\text{aHF or CH}_2\text{Cl}_2, \text{0°C or rt}} \text{4}
\]

\[
1,3,5-C_6H_3F_3 + \text{BF}_3 + \text{Xe}
\]

Table I. Preparation of [ArXe] [BF$_4$].

<table>
<thead>
<tr>
<th>ArBF$_2$, mmol</th>
<th>CH$_2$Cl$_2$, ml</th>
<th>XeF$_2$, mmol yield in mmol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$F$_5$BF$_2$, 1.40</td>
<td>3</td>
<td>1.50</td>
</tr>
<tr>
<td>C$_6$F$_5$BF$_2$ + C$_6$F$_5$BCl$_2$ (21 : 79), 0.50</td>
<td>2</td>
<td>0.93</td>
</tr>
<tr>
<td>2,3,4,5-C$_6$F$_4$HBF$_2$, 1.23</td>
<td>2.5</td>
<td>1.26</td>
</tr>
<tr>
<td>3,4,5-C$_6$F$_3$H$_2$BF$_2$, 1.95</td>
<td>4</td>
<td>1.97</td>
</tr>
<tr>
<td>3,5-C$_6$F$_5$H$_3$BF$_2$, 1.53</td>
<td>10</td>
<td>1.38</td>
</tr>
</tbody>
</table>

These experimental results show the clear interdependence between the presence of carbon-bonded fluorine atoms in the [BF$_4$]$^-$ salts of arylxenon cations and the thermal stability and reactivity towards strong acids with weakly nucleophilic anions. The influence of the electronic structure in partially fluorinated arylxenon(II) cations on their reactivity will be discussed elsewhere.
Table II. NMR spectra of \([\text{ArXe}]\left[\text{BF}_4\right]\).

<table>
<thead>
<tr>
<th>Ar</th>
<th>Solvent</th>
<th>(T , ^\circ\text{C})</th>
<th>(\delta(\text{H}))</th>
<th>(\delta(\text{F})) (^a)</th>
<th>(\delta(\text{Xe}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>F-2</td>
<td>F-3</td>
<td>F-4</td>
</tr>
<tr>
<td>(\text{C}_6\text{F}_5)</td>
<td>HF</td>
<td>-10</td>
<td>-123.26</td>
<td>-142.26</td>
<td>-123.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 11, (2,4) 6, (2,6) 6, (3,4) 19, (3,5) 5, (F-2, Xe) 58.6; 59.3; (F-3, Xe) 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{C}_6\text{F}_5)</td>
<td>MeCN</td>
<td>-30</td>
<td>-125.48</td>
<td>-155.04</td>
<td>-142.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,4) 4, (3,4) 20, (F-2, Xe) 68; 67 (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2,3,4,5-\text{C}_6\text{H}_4\text{F}_4)</td>
<td>HF</td>
<td>-10</td>
<td>8.70</td>
<td>-120.20</td>
<td>-143.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 15, (2,4) 7, (2,6) 4, (3,4) 18, (3,5) 5, (3,6) 3, (4,5) 18, (4,6) 7, (F-2, Xe) 54.8; 54.7 (^b), (H-6, Xe) 14.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2,3,4,5-\text{C}_6\text{H}_4\text{F}_4)</td>
<td>MeCN</td>
<td>-30</td>
<td>8.11</td>
<td>-119.94</td>
<td>-143.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 18, (2,4) 8, (2,5) 5, (2,6) 5, (3,4) 19, (3,5) 9, (4,5) 20, (4,6) 7, (5,6) 9, (F-2, Xe) 63.4, 63.1 (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3,4,5-\text{C}_6\text{H}_2\text{F}_3)</td>
<td>HF</td>
<td>-10</td>
<td>8.54</td>
<td>-120.87</td>
<td>-147.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 5, (2,4) 5, (3,4) 18, (H-2, Xe) 17.6 (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3,4,5-\text{C}_6\text{H}_2\text{F}_3)</td>
<td>MeCN</td>
<td>-30</td>
<td>8.05</td>
<td>-125.89</td>
<td>-150.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 6, (3,4) 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3,5-\text{C}_6\text{H}_3\text{F}_2)</td>
<td>HF, (e)</td>
<td>-60</td>
<td>8.46 (H-2,6), 8.06 (H-4), 7.94 (H-2,6), 7.59 (H-4)</td>
<td>-96.59</td>
<td>-101.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J [Hz]: (2,3) 6, (2,4) 7, (3,4) 19, (3,5) 9, (4,5) 20, (4,6) 7, (5,6) 9, (F-2, Xe) 63.4, 63.1 (^b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) \(^{19}\text{F}\) resonances of the anion \([\text{BF}_4]^-\) were located at -148.71 (1), -148.03 (2), -147.56 (3) in acetonitrile solution, at -149.43 \(^b\) (4) ppm, and at -148.09 (1), -148.50 (2), -148.16 (3) and -148.31 (4) ppm in aHF solution; \(^b\) From \(^{129}\text{Xe}\) NMR spectrum; \(^c\) Apparent constant; \(^d\) Counteranion \([\text{AsF}_5]^-\); \(^e\) In CD\(_3\)CN - EtCN (1 : 3).

Experimental

NMR spectra were measured on Bruker spectrometers WP 80 SY (\(^1\text{H}\) at 80.13 MHz and \(^{19}\text{F}\) at 75.39 MHz) and AVANCE DRX 500 (\(^1\text{H}\) at 500.13 MHz, \(^{19}\text{F}\) at 470.59 MHz and \(^{129}\text{Xe}\) at 138.34 MHz) with TMS (\(^1\text{H}\)), CCIF\(_3\) (\(^{19}\text{F}\)), and XeOF\(_4\) (\(^{129}\text{Xe}\)) as references. The IR spectra were measured on the Bruker IFS 66 spectrometer in polyethylene pellets. GC-MS analysis was performed with the Hewlett Packard HP G 1800A instrument.

Preparations of K \([\text{ArBF}_3]\) and ArBF\(_2\) (\(\text{Ar} = \text{C}_6\text{F}_5\), 2,3,4,5-\text{C}_6\text{H}_4\text{F}_4\), 3,4,5-\text{C}_6\text{H}_2\text{F}_3\) and 3,5-\text{C}_6\text{H}_3\text{F}_2\) were recently described \([8]\). The yield of aryldifluoroboranes was determined from the \(^{19}\text{F}\) NMR spectra of the solutions in dichloromethane using \(1,1,2\)-trichlorotrifluoroethane as quantitative internal reference. Anhydrous HF was electrolytically dried and trifluoromethanesulfonic acid was distilled before use. All manipulations with arylnexon(II) salts were carried out in a dry argon atmosphere in FEP traps. For NMR measurements FEP inliners were used.

Preparation of arylxenon(II) tetrafluoroborates (general procedure)

Xenon difluoride was added portionwise to the stirred solution of the aryldifluoroborane in dichloromethane at \(-40\) to \(-50\) \(^\circ\text{C}\). After 1 - 2 h the suspension was warmed slowly to rt. After centrifugation the mother liquor was decanted and the arylxenon(II) tetrafluoroborate was washed with several portions of CH\(_2\)Cl\(_2\) and finally dried in vacuum at rt (Table I). Salt 4 was isolated at \(\leq -40\) \(^\circ\text{C}\).

The reaction of a mixture (21 : 79) of C\(_6\text{F}_5\)BF\(_2\) and C\(_6\text{F}_5\)BCF with XeF\(_2\) was performed in a similar manner. NMR spectra are presented in Table II.

Pentafluorophenylxenon(II) tetrafluoroborate 1. IR: 441, 433, 381, 349, 308, 278, 224, 203, 132, 116 cm\(^{-1}\). Elemental analysis for C\(_6\text{F}_5\)BF\(_3\)Xe (385.15 g/mol)
Calcd C 18.7 F 44.4 %
Found C 19.4 F 44.3 %

2,3,4,5-Tetrafluorophenylxenon(II) tetrafluoroborate 2. IR: 434, 384, 359, 338, 321, 292, 282, 212, 194, 168, 148, 117 cm\(^{-1}\).
Elemental analysis for C$_6$HBF$_5$Xe (367.91 g/mol)
Calcld C 19.6 H 0.27 F 41.3 %,
Found C 18.6 H 0.23 F 42.0 %.

Stability of [ArXe] [BF$_4$] solutions in acids

A. [2,3,4,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.10 mmol) was dis­solved in aHF (0.2 ml) and kept at rt for 16 d. No changes were detected (19F NMR).

B. A solution of [3,4,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.13 mmol) in aHF (0.3 ml) was kept at rt for 12 h. Quantitative conversion of 3 into 1,2,3,5-tetrafluorobenzene was observed (19F NMR).

C. [3,4,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.07 mmol) was dissolved in HOF$_2$ (0.1 ml) at -60 °C and kept at rt. The conversion of 3 was ca. 50 % after 1.5 h and complete after 16 h. The formation of 1,2,3,5-tetrafluorobenzene and 3,4,5-C$_6$H$_2$F$_2$OS(O)$_2$CF$_3$ as the only aromatic compounds was confirmed by 19F NMR. The reaction mixture was poured onto ice, the products were extracted with dichloromethane and the extracts were dried with MgSO$_4$. The 19F NMR spectrum showed the presence of 1,2,3,5-tetrafluorobenzene and 3,4,5-C$_6$H$_2$F$_2$OS(O)$_2$CF$_3$ (18:82) (quantitative total yield). The latter compound was characterized by the 19F resonances at -130.6 (F-6), -159.6 (F-4) and -73.0 (OSO$_2$CF$_3$ ppm) and the 1H resonance at 7.07 ppm. The mass spectrum of the mixture contained the molecular ions m/z 150 [1,2,3,5-C$_6$H$_2$F$_3$]$^+$ and 280 [3,4,5-C$_6$H$_2$F$_2$OS(O)$_2$CF$_3$]$^+$.

D. A solution of [3,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.14 mmol) in aHF (1 ml) was kept at -30 °C for 13 h. It showed the formation of trifluorobenzene 6 (64 % conversion of 4). At 0 °C the decomposition of 4 into 6, Xe and BF$_3$ was complete within a few hours (19F NMR).

Stability of [ArXe][BF$_4$] solutions in MeCN or EtCN-MeCN

A. An acetonitrile solution of 1 was kept at rt and showed 60 % conversion after 13 d and total conversion after 23 d (19F NMR). Products were C$_6$HF$_5$, (C$_6$F$_5$)$_2$ (10:1), C$_6$F$_6$ (traces) besides an unidentified compound C$_6$F$_3$X [3(F): -143.38 (F-2,6), -153.10 (F-3,5) ppm]. The broad resonance at ca. -149 ppm was assigned to fluorine bonded to boron, presumably [BF$_4$]$^-$.

B. A solution of [3,4,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.08 mmol) in MeCN (0.25 ml) was kept at rt for 18 h. The 19F NMR spectrum confirmed the total decomposition of 3 and the formation of 1,2,3,5-tetrafluorobenzene (yield 14 %) besides a number of unidentified products.

C. Compound [3,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.14 mmol) was dissolved in EtCN - CD$_2$CN (3:1) (0.5 ml) at -60 °C. No changes were observed within 7 h at this temperature, but warming to -30 °C caused the quantitative decomposition of 4 and the formation of 1,3,5-trifluorobenzene as the main aromatic product (19F NMR).

Stability of [ArXe][BF$_4$] in CH$_2$Cl$_2$ suspensions

A. A suspension of [3,4,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.08 mmol) in CH$_2$Cl$_2$ (0.25 ml) was agitated at rt for 5 d. The 19F NMR spectrum showed the total decomposition of salt 3 and the formation of 1,2,3,5-tetrafluorobenzene besides traces of unidentified products.

B. Compound [3,5-C$_6$H$_2$F$_2$Xe] [BF$_4$] (0.14 mmol) was suspended in CH$_2$Cl$_2$ (0.5 ml) at -60 °C and agitated at rt. The quantitative conversion of 4 into 1,3,5-trifluorobenzene was observed within 2 h (19F NMR).

Acknowledgements

We gratefully acknowledge financial support by Volkswagen Stiftung and Fonds der Chemischen Industrie.