Synthesis of the Stereoisomers of β-Hydroxyhistidine and their Analytical Identification in Hydrolysates of Bacterial Peptides

K. Taraz, M. Weber, H. Budzikiewicz

Institut für Organische Chemie der Universität zu Köln, Greinstr. 4, D-50939 Köln

Z. Naturforsch. 53b, 1520–1524 (1998); received August 18, 1998

β-Hydroxyhistidine. Stereospecific Synthesis

The synthesis of the four stereoisomers of β-hydroxyhistidine and their analytical identification is reported.

Introduction

Ser (= β-hydroxy Ala) belongs to the proteinogenic amino acids while other β-hydroxy amino acids prevail in bacterial peptidic metabolites, often acting as Fe3+ chelating ligands. Thus, β-hydroxy Asp is frequently encountered in the Pseudomonas siderophores (pyoverdins) [1]. β-Hydroxy Leu and 3-hydroxy-3-methyl Pro were recently found in a depsipeptide from Streptomyces sp. [2]. L-Erythro-β-Hydroxy His is a characteristic component of bleomycins from Streptomyces verticillus [3]. L-Threo-β-hydroxy His was found in exochelin MN from Mycobacterium neoaurum [4] and in pyoverdin PF244 from Pseudomonas fluorescens [5]. In our studies of Pseudomonas siderophores we recently encountered twice amino acids that from spectral evidence could have been β-hydroxy His [6]. Therefore, we needed authentic comparison material of all four stereoisomers. In the literature syntheses are described for the S-erythro isomer [7] and one preparation without experimental details for the R-threo isomer in about 90% purity [7]. So we decided to synthesize all four stereoisomers 1–4 for the formation of derivatives which allow a direct comparison with the material obtained from the degradation of the siderophores.

![Scheme 1. The four stereoisomers of β-hydroxyhistidine.](image)

Materials and Methods

Instruments and materials

NMR: Bruker (Karlsruhe) AM 300 (1H 300, 13C 75.5 MHz), chemical shifts relative to TMS with internal standard DSS using the relations δ(TMS) = δ(DSS) for 1H and δ(TMS) = δ(DSS) - 1.61 ppm for 13C.

Mass spectrometry: FAB-MS Finnigan MAT (Bremen) HSQ 30 with a FAB gun from Ion Tech (Teddington, GB), gas Xe. GC-MS Finnigan (San Jose, CA, USA) Incos 500 with Varian (Walnut Creek, CA, USA) 3400 gas chromatograph, capillary column SE-54 (Chromatographic Service, Langerwehe).

X-ray analysis: Enraf-Nonius-CAD4 Diffrakтомeter (Nonius, Delft, NL).

Abbreviations: Common amino acids, 3-letter code; TMS, trimethylsilyl; Chromatography: GC, gas chromatography(y); RP-HPLC, reversed phase high performance liquid chromatography; TLC, thin layer chromatography; Mass spectrometry: CI, chemical ionisation; EI, electron ionisation; FAB, fast atom bombardment; PI, positive ion; GC-MS, GC coupled with a mass spectrometer; NMR: DSS 2,2-dimethyl-2-silapentane-5-sulfonate; TMS, tetramethylsilane.

* Reprint requests to Dr. K. Taraz.

Telefax: +49–221–470–5057.

0932–0776/98/1200–1520 $06.00 © 1998 Verlag der Zeitschrift für Naturforschung, Tübingen • www.znaturforsch.com
HPLC: Knauer (Berlin) HPLC pump 64; columns: Knauer Kromasil C₄ (5 μm, 250x4 mm), Macherey-Nagel (Düren) ET 200/8/4 Nucleodex β-OH (5 μm, 200x4 mm).

Column Chromatography: Merck (Darmstadt) silicagel 60 (70–230 mesh); Whatman (Whatman Balston, Tewksbury, MS, USA) cellulose powder CF 11; Serva (Heidelberg) Dowex 50 WX 8 (H⁺-form, 20–50 mesh); Serva XAD-4 (0.3–1 mm, pores 85–90 Å; Pharmacia (Freiburg) SP Sephadex C-25; Waters (Milford, MS, USA) Sep-Pak RP₁₈-cartridge.

TLC: Macherey-Nagel Polygram cellulose plates CEL 300 UV₂₅₄ (0.1 mm); Polygram silicagel plates SIL G/UV₂₅₄ (0.25 mm).

Reagents

All chemicals were of p.a. quality. Solvents were distilled prior to use and -when necessary- freed from water. For HPLC deionized and twice distilled water purified on XAD-4 resin was used.

Inert techniques

Reaction flasks were evacuated (600 Pa) and heated for removal of adsorbed water, then flushed with N₂ (purity grade 2.0, passed over CuCat., P₂O₅ and KOH. and through conc. H₂SO₄). Syringes were dried at 110 °C for 24 hrs; during the addition of reagents and during the entire reaction the whole system was flushed by N₂ purified as described above.

Syntheses

(2S,5S,6S)-1-Benzoyl-2-t-butyl-5-[hydroxy(1'-trifluoromethyl-4'-imidazoly)ethyl]-3-methylimidazolidin-4-one (7) and (2R,5S,6S)-5-[benzoyl(1'-trifluoromethyl-4'-imidazolyl)ethyl]-2-t-butyl-3-methylimidazolidin-4-one (8)

Under inert conditions (v. supra) in a 250 ml three-neck flask 0.388 ml (2.75 mmol) diisopropylamine in 50 ml dry tetrahydrofuran (THF) were cooled to −78 °C. 1.72 ml (2.75 mmol) of n-butyl-lithium as a 1.6 M solution in hexane was added drop by drop. The colorless solution was stirred for 20 min, then 0.65 g (25 mmol) (2S)-1-benzoyl-2-t-butyl-3-methylimidazolidin-4-one (6) in 20 ml dry THF was added in small portions. The orange-coloured solution was cooled to -100 °C. After 20 min stirring, 1.69 g (5 mmol) 1-triphenyl-4-imidazole aldehyde (5) [8] in 10 ml THF was added drop by drop and the mixture was stirred for 30 min at -100 °C (liquid N₂/diethyl ether) and subsequently for 30 min at room temperature. With the help of a syringe the mixture was transferred into a saturated aqueous NH₄Cl solution. The aqueous phase was separated and extracted 3 times with portions (20 ml each) of diethyl ether. The combined organic phases were dried over MgSO₄ and freed of the solvents i. v. By chromatography on silica gel (diethyl ether:hexane:acetone 50:26:6 v/v/v) unreacted starting materials were removed. The reaction products 7 and 8 were eluted with acetone. The partially crystalline mixture (yield 1.17 g) contained 7 and 8 in a ratio of 3:1 (by NMR).

(2S,5S,6S)-1-Benzoyl-2-t-butyl-5-[hydroxy(1'-trifluoromethyl-4'-imidazolyl)methyl]-3-methylimidazolidin-4-one (7)

M.p.: 86 °C;

⁻¹H NMR (CDCl₃): 7.98–7.05 (m, 20 arom. H; H-C(2)); 6.97 (d, J=1.5, H-C(5)); 6.28 (d, J=2.4, H-C(6)); 4.38 (d, J=2.4, H-C(2)); 4.16 (t J=2.4, H-C(5)); 2.86 (s, CH₃); 1.01 (s, t-butyl).

⁻¹³C NMR (CDCl₃): 173.5; 170.8; 142.5; 139.2; 139.1; 138.1; 136.4; 132.1; 129.1; 128.4; 128.3; 121.9; 80.8; 75.5; 67.7; 61.0; 41.1; 33.0; 26.5.

EI-MS: 541; 243 (100); 165; 105; 77. PI-FAB-MS (thioglycerol): 599 [M+H]+; 243 (100).

(2R,5S,6S)-5-[Benzoyl(1'-trifluoromethyl-4'-imidazolyl)methyl]-2-t-butyl-3-methylimidazolidin-4-one (8)

M.p.: 86 °C;

⁻¹H NMR (CDCl₃): 7.98–7.05 (m, 20 arom. H; H-C(2)); 6.97 (d, J=1.5, H-C(5)); 6.28 (d, J=2.4, H-C(6)); 4.38 (d, J=2.4, H-C(2)); 4.16 (t J=2.4, H-C(5)); 2.86 (s, CH₃); 1.01 (s, t-butyl).

⁻¹³C NMR (CDCl₃): 173.0; 165.5; 142.4; 139.1; 137.7; 133.1; 130.5; 130.0; 129.9; 128.5; 128.4; 128.3; 121.7; 84.2; 75.8; 70.4; 62.7; 37.3; 31.1; 25.4.

EI-MS: 541; 243 (100); 165; 105; 77. PI-FAB-MS (thioglycerol): 599 [M+H]+; 243 (100).

S-Three-β-hydroxyhistidine-monohydrochloride-monohydrate (4)

In a 50 ml flask the mixture of 0.78 g (1.3 mmol) 7 and 8 was heated with 20 ml 6 N HCl under stirring for 24 h at 100 °C. The aqueous phase was extracted 4 times with portions of diethyl ether (15 ml each) and then brought to dryness i. v. The obtained product was recrystallized twice from acetone/water. Yield 0.19 mg colourless needles.

M.p.: 190–200 °C (decomposition);

rot.: [α]D₂₅ = −24 ± 2° (c=1mol/l, in H₂O).
\[\text{1H NMR (D}_2\text{O, pH 4.3): 8.72 (d, J=1.3, H-C(2));} \\
7.51 (dd, J=0.9;1.3, H-C(5)); 5.42 (dd, J=5.1; 0.9, H-C(3)); 4.03 (d, J=5.1, H-C(2)). \]
\[\text{13C NMR (D}_2\text{O, pH 4.3): 171.9; 135.6; 133.5; 117.9; 65.0; 60.0.} \]
\[\text{EI-MS: 171 (M +); 109; 97 (100); 81; 69; 54; 44. PI-FAB-MS (glycerol): 172 [M+H]+.} \]

R-Threo-\(\beta\)-hydroxyhistidine-monohydrochloride-monohydrate (3)

The same procedure as described above was used starting from (2R)-1-benzoyl-2-\(\beta\)-butyl-3-methylimidazolidin-4-one.

M.p.: 190–200 °C (decomposition);
rot.: \([\alpha]_{D}^{25} = +22 \pm 2^\circ \) (c=1 mol/l, in H\,O).

\[\text{1H NMR (D}_2\text{O, pH 4.3): 8.72 (d, J=1.3, H-C(2));} \\
7.51 (dd, J=0.9;1.3, H-C(5)); 5.42 (dd, J=5.1; 0.9, H-C(3)); 4.03 (d, J=5.1, H-C(2)). \]
\[\text{13C NMR (D}_2\text{O, pH 4.3): 171.9; 135.6; 133.5; 117.9; 65.0; 60.0.} \]

EI-MS: 171 (M +); 109; 97 (100); 81; 69; 54; 44. PI-FAB-MS (glycerol): 172 [M+H]+.

N/O-Pentafluoropropionyl-O-isopropylester of \(\beta\)-hydroxy His.

1.5 mg (0.067 mmol) \(\beta\)-hydroxy His in 1 ml isopropanol/acetylchloride (5:1 (v:v)) was heated to 110 °C for 1 h. After cooling the reaction mixture to room temp, the solvent was removed i. v. The reaction product was solved in dichloromethane, treated by ultrasonic for 1 min and heated with 0.3 ml pentafluoropropionic anhydride to 150 °C for 5 min. After cooling to room temp, the reaction mixture was brought to dryness i. v. The N,O-acyl derivative was dissolved in 100 \(\mu\)l dichloromethane and used for GC-MS experiments immediately.

Silylation of \(\beta\)-hydroxy His with N-methyl-N-trimethylsilyltrifluoroacetamide

1.5 mg (0.067 mmol) \(\beta\)-hydroxy His was heated for 2 h in 300 \(\mu\)l N-methyl-N-trimethylsilyltrifluoroacetamide to 130 °C. The reaction mixture was cooled to room temp. and used for GC-MS experiment immediately.

Results and Discussion

Syntheses

R, S-Erythro-\(\beta\)-hydroxyhistidine (1) + (2)

As several syntheses of R, S-erythro-\(\beta\)-hydroxy His are known (v. supra) the erythro racemate was synthesized for further separation and derivatisation studies according to literature [9].

R- and S-Threo-\(\beta\)-Hydroxyhistidine (3) + (4)

The enantioselective synthesis of R- and S-threo-\(\beta\)-hydroxy His was effected by a modification of the procedure introduced by Seebach [10] (Scheme 2). 4-Formyl-1-triphenylmethyl-imidazole aldehyde (5) [11] (the introduction of the triphenylmethyl group renders the aldehyde soluble in THF) is allowed to react with (2S)-6 or (2R)-1-benzoyl-2-\(\beta\)-butyl-3-methylimidazolidin-4-one. The 2-\(\beta\)-butyl group shields one side of the molecule and the chirality at C-2 thus determines the course of the reaction. The mixture of 7 and 8 can be used for the further steps of the synthesis without separation. 3 was obtained with 92% ee, 4 with 94% ee. The absolute stereochemistry of 3 and 4 was confirmed by X-ray analysis of single crystals of the monohydrates-monohydrochlorides.

Characterisation of the enantiomers 1 – 4

Chromatography

(a) RP-HPLC. Derivatisation with dansyl chloride [12] resulted in a mixture of mono- and didansylate. On the achiral Kromasil C\(_4\) column using an acetic acid (20 mm)/methanol gradient (80 to 2% acetic acid (27 min); 2% acetic acid (8 min)) the threo monodansylates eluted before the erythro monodansylates while for the didansylates the order was reversed. On the chiral Nucleodex column using a TEA-acetic acid (pH 3.9) buffer/methanol gradient (90 to 45% buffer (18 min); 45 to 2% buffer (9 min); 2% buffer (5 min)) the sequence for the monodansylates is S-threo, R-threo, S-erythro, R-erythro, and for the didansylates S-erythro, S-threo, R-erythro, R-threo.

(b) GC-MS. For the analysis of amino acids both with achiral and chiral columns the N/O-perfluoropropionic acid esters were used [13]. Best results were obtained with pentafluoropropionic anhydride. However, not the mass spectrum of the expected N,O-acyl derivative was observed, but rather that of two decomposition products formed by the loss of pentafluoropropionic acid and of isopropanol, resp. [14].

Trimethylsilylation of \(\beta\)-hydroxy His gave a mixture of O,O-di-TMS and of N,N,O,O-tetra-TMS.
derivatives. The best results were obtained with N-methyl-N-trimethylsilyl trifluoroacetamide \cite{13}.
On a SE-54 column both the di- and tetra-TMS derivatives of the erythro isomers eluted before those of the threo-isomers.

NMR spectroscopy

In Tables I and II the 1H and 13C NMR spectral data of threo- and erythro-β-hydroxy His are compiled. In the 1H-spectra the shift differences are about 0.1 ppm for the protons in the aliphatic chain and for the 5'-ring proton. Surprisingly the largest shift differences in the 13C-spectra cannot be found in the asymmetric carbon centers C-2 and C-3, but rather in those neighboring them, viz. C-1 and C-4'.

Table I. 1H NMR data of threo- and erythro-β-hydroxy His at pH 4.3.

<table>
<thead>
<tr>
<th>Atom</th>
<th>threo δ (ppm)</th>
<th>J (Hz)</th>
<th>erythro δ (ppm)</th>
<th>J (Hz)</th>
<th>Δ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.03</td>
<td>d, 5.1</td>
<td>4.17</td>
<td>d, 3.7</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>5.42</td>
<td>dd, 5.1, 0.9</td>
<td>5.51</td>
<td>dd, 3.7, 0.9</td>
<td>0.09</td>
</tr>
<tr>
<td>2'</td>
<td>8.72</td>
<td>d, 1.3</td>
<td>8.70</td>
<td>d, 1.3</td>
<td>0.02</td>
</tr>
<tr>
<td>5'</td>
<td>7.51</td>
<td>dd, 0.9, 1.3</td>
<td>7.42</td>
<td>dd, 0.9, 1.3</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table II. 13C NMR data of threo- and erythro-β-hydroxy His at pH 4.3.

<table>
<thead>
<tr>
<th>Atom</th>
<th>threo δ (ppm)</th>
<th>erythro δ (ppm)</th>
<th>Δ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.9</td>
<td>171.1</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>60.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>65.0</td>
<td>64.9</td>
<td>0.1</td>
</tr>
<tr>
<td>2'</td>
<td>135.6</td>
<td>135.1</td>
<td>0.5</td>
</tr>
<tr>
<td>4'</td>
<td>133.5</td>
<td>132.1</td>
<td>1.4</td>
</tr>
<tr>
<td>5'</td>
<td>117.9</td>
<td>117.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Conclusions

The four stereoisomeric β-hydroxy His (RR, SS - threo-, RS, SR - erythro-) can be distinguished by their chromatographic and NMR-spectroscopic properties. However, the differences are rather small and in the absence of other criteria (as by a differentiation between the D- and L- (R- and S-) amino acids by enzymatic methods \cite{15}) reference compounds should be available.
Acknowledgement

The research was supported by the European Commission DG XII under the project “Cell factories for the production of bioactive peptides from Bacillus subtilis and Pseudomonas” (Bio4-CT95–0176). We wish to thank Prof. Y. Ohashi for obtaining and translating the thesis of T. Yoshioka (1977).