Synthesis of Glycosyl Cyanides by the Reaction of 1-S-Phosphorothioates of Carbohydrates with Trimethylsilyl Cyanide

Wiesława Kudelska

Institute of Chemistry, Faculty of Pharmacy, Medical University of Łódź, 90-151 Łódź, Muszyńskiego 1, Poland

Z. Naturforsch. 53 b, 1277–1280 (1998); received July 23, 1998

S-Glycosylphosphorothioates, Glycosyl Cyanides, Synthesis

A new procedure is described for the synthesis of α,β-glycosyl cyanides by the reaction of per-O-benzylated S-α-D-glycopyranosyl phosphorothioates with trimethylsilyl cyanide in the presence of Lewis acid. Starting S-glycosyl phosphorothioates are prepared, directly, from O-benzyl protected reducing D-hexopyranoses (gluco-, galacto-, manno-) and alkylammonium salt of phosphorothioic acid under Lewis acid catalysis.

Introduction

Glycosyl cyanides are versatile, synthetic intermediates for the preparation of compounds of biological and chemical interest, irreversible enzyme-inhibitors and are of interest as chiral synths for many natural products.

Per-O-acetylated glycosyl cyanides have been prepared by the reaction of furanosyl and pyranosyl halides [1 - 4] with metal cyanides, most frequently mercuric cyanide, the reaction of 1-O-acetyl sugars with trimethylsilyl cyanide in the presence of Lewis acids [5, 6], by dehydration of amides of anhydroaldonic acids [7] and reductive dehydration of glycosyl nitromethanes [8]. O-Benzyl protected glycosyl cyanides have been obtained from glycosyl fluorides [9], glycosyl iodides generated in situ from 1-O-acetates [10], and from 1-O-acetyl sugars with trimethylsilyl cyanide [11].

Previously, S-glycosyl phosphorodithioates, having glycosylating properties, have been used in the stereoselective synthesis of O-glycosides [12], N-glycosides [13], oligosaccharides [14, 15] and glycosyl 1-O-esters [16].

We report here new application of 1-S-glycosyl phosphorothioates 5 – 7, stable, odorless and nontoxic reagents, in the synthesis of glycosyl cyanides 8 - 12 under mild conditions and in high yields in the reaction with trimethylsilyl cyanide and Lewis acid catalysis.

Results and Discussion

Recently we have described [17] that, catalysed by boron trifluoride etherate, the reaction of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (2) with the triethylammonium salt of 2-hydroxy-5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinane (1) [18] affords per-O-benzylated S-α-glycopyranosyl phosphorothioate 5, stereoselectively. The catalysed phosphorylation of 1-O-unprotected sugars was now extended to 2,3,4,6-tetra-O-benzyl-D-galactopyranose (3) [19, 20] and 2,3,4,6-tetra-O-benzyl-D-mannopyranose (4) [20]. The reaction of 3 with 1 (according to 31P NMR) was accomplished after 24 h, to yield a mixture of three phosphorus containing products [8 31P NMR (ppm): 20.5, 19.25, 17.7 (integration) 1:6.6:0.9] from which product 6 was isolated in 51% yield (δ 31P NMR (ppm): 19.25). Similarly, when 4 was allowed to react with 1 after 24 h, 31P NMR analysis indicated that the crude reaction mixture also consisted of three P-products [8 31P NMR (ppm): 20.5, 19.8, 17.7 (integration) 1:1.7:6.5] from which product 7 is isolated in 38% yield (δ 31P NMR (ppm): 17.7). The α-configuration at the anomeric carbon atom of products 6 and 7 was assigned on the basis of 1H and 13C NMR spectra and of optical rotation values (see experimental).

S-α-Glycopyranosyl phosphorothioates 5 – 7 were reacted with trimethylsilyl cyanide in acetonitrile in the presence of boron trifluoride etherate. The reaction of S-glycosyl phosphorothioate 5 gave a mixture of β- and α-β-glycopyranosyl cyanide 8 [9, 11, 21] in 72% yield. Product 8 was analysed as

* Reprint requests to Dr. W. Kudelska.

0932-0776/98/1100-1277 $ 06.00 © 1998 Verlag der Zeitschrift für Naturforschung, Tübingen • www.znaturforsch.com

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.
a mixture of anomers because attempts to separate \(\alpha\) from \(\beta\) by PLC failed. The \(\alpha:\beta\) ratio was 3:3.5, as determined by \(^{13}\)C NMR. Similarly, \(S\)-galactosyl phosphorothioate 6 afforded a mixture \(\alpha\)- (9) and \(\beta\)-D-galactopyranosyl cyanide (10) \([11]\) in 28% and 35% yields, respectively. In the case \(S\)-mannosyl phosphorothioate 7 also a mixture of \(\alpha\)- and \(\beta\)-D-mannopyranosyl cyanide 11 and 12, in 54% and 24% yields, was obtained. Both anomic mixtures (\(\alpha\), \(\beta\)-galacto and \(\alpha\), \(\beta\)-manno) were isolated and separated by preparative layer chromatography, and all glycosyl cyanides were characterized by spectroscopic analyses (see experimental). Of the three \(S\)-glycosyl phosphorothioates 5 - 7 examined, galacto derivative 6 proved to be the most reactive towards the silyl reagent and the manno derivative 7 was the least reactive.

Attempts to synthesise of glycosyl cyanides from sugar thiophosphates and cyanide polymer supported (Fluka) catalysed by Lewis acid were unsuccessful.

In conclusion, the acid-catalysed formation of 1-\(S\)-\(\alpha\)-glycosylphosphorothiolate from 1-OH unprotected sugars and alkylammonium salt of \(O\)-\(O\)-dialkylphosphorothioic acid and the subsequent acid catalysed C-glycosidation is reported. This method is applied to the new synthesis of anomic pairs of per-\(O\)-benzylated \(D\)-hexopyranosyl cyanides (2,6-anhydroheptononitriles).

Experimental

Melting points were determined with Boetius PHMK 05 apparatus and are uncorrected. Optical rotations were determined with the Polamat A polarimeter. IR spectra were obtained by using the Infinity MI-60 FT-IR spectrometer. \(^1\)H, \(^{13}\)C and \(^{31}\)P NMR were measured in CDCl\(_3\) solutions on a Bruker DPX spectrometer operating at 250.13 MHz, 62.9 MHz and 101.25 MHz, respectively. Elemental analyses were performed by Microanalytical Laboratory of this Institute on a Perkin Elmer PE 2400 CHNS analyzer. Preparative layer chromatography was performed on \(20 \times 20\) cm glass plates coated with 1 mm or 2 mm of silica gel 60 F\(_{254}\) (Merck). Detection was effected by exposure to iodine vapours and UV lamp. Solvents were dried and distilled prior to use. Trimethylsilyl cyanide was purchased from Aldrich.

Preparation of \(S\)-glycosyl phosphorothioates 6 and 7

Boron trifluoride etherate (3 mmol) was added to the solution of glycosyl substrates 3 or 4 (1 mmol) and organophosphorous reagent 1 (1 mmol) in 1,2-dichloroethane (25 ml). The course of reaction was monitored by \(^{31}\)P and \(^1\)H NMR spectroscopy. The mixture was kept at ambient temperature for 24 h, washed with satd. NaHCO\(_3\) (3 x 15 ml) and water (15 ml), dried (MgSO\(_4\)), concentrated in vacuo and the products were purified by crystallisation.

2-\(S\)-(2,3,4,6-Tetra-\(O\)-benzyl-\(\alpha\)-D-galactopyranosyl)-2-oxo-5,5-dimethyl-1,3-dioxaphosphorinane (6)

Crystallisation from CCl\(_4\)-hexane gave 6 (0.223 g, 31.7%) m. p. 94-6 °C. Evaporation of mother liquors gave syrup, which crystallised from CCl\(_4\)-hexane gave an additional amount of 6 (0.136 g, 19.3%) m. p. 81-90 °C. Second crystallisation CCl\(_4\)-hexane gave 6 m. p. 100-2 °C; \([\alpha\]\(_{589}\) + 105.6° (c 1.25, CHCl\(_3\)); IR (KBr) \(\nu\) 1285 cm\(^{-1}\) (P=O). \(^{31}\)P NMR (CDCl\(_3\)) \(\delta\): 19.25 ppm; \(^1\)H NMR (CDCl\(_3\)) \(\delta\): 0.77, 1.23 (2s, 6 H, 5,5-diMe), 3.57 - 3.91 (m, 3 H, H-5,6,6), 4.02 (m, 1 H, H-4), 4.12 (dd, 1 H, J\(_{2,3}\) = 10.5 Hz, J\(_{3,4}\) = 5.5 Hz, H-3), 4.34 (dd, 1 H, J\(_{1,2}\) = 5.5 Hz, H-2), 6.24 (dd, 1 H, J\(_{1,3}\) = 8.5 Hz, H-1), 4.0 - 5.0 (m, H-10), 7.28 - 7.35 (m, 2 H, H-2,3).
12 H, 4 × benzyl, 2 × OCH2); 7.26 - 7.4 (m, 20 H, Ph); 13C NMR (CDCl3) δ: 20.3 (d, 4JCp = 1.05 Hz, Meαα), 21.9 (Meαα), 32.2 (d, 3JCp = 6.7 HZ, C(Me2)), 75.7 (d, 3JCp = 6.2 Hz, C-2), 86.1 (d, 2JCp = 2.5 Hz, C-1), 77.4 (d, 2JCp = 7.2 Hz, OCH2), 78.0 (d, 2JCp = 7.2 Hz, OCH2), 68.2 (C-6), 72.2, 72.5, 73.2, 73.5, 74.4, 78.8, 79.1 (C-3, C-4, C-5, C-6, 4 × CH2 (benzyl)), 127.3 - 128.4 (20C, Ph), 137.7, 137.9, 138.4, 138.4 (4C, ipso Ph).

C30H44O5PS (704.75)
Calcd C 66.46 H 6.43 %,
Found C 66.31 H 6.76 %.

2-S-(2,3,4,6-Tetra-O-benzyl-α-D-mannopyranosyl)-2-oxo-5,5-dimethyl-1,3,2-dioxaphosphorinan (7)

Crystallisation by trituration with diethyl ether. The solution of 5 (0.354 g, 0.5 mmol), trimethylsilyl cyanide (0.5 ml, 3.74 mmol), boron trifluoride etherate (5 drops) and molecular sieves 4A in acetone (5 ml) was stirred at ambient temperature for 5 h under argon. The reaction mixture was concentrated in vacuo and the residue chromatographed by preparative layer chromatography using hexane-ethyl acetate (3:1) as the eluent. The faster running band (RF = 0.52, lit. [11] RF = 0.52) afforded a solid, which crystallized from ethyl acetate-hexane (3:1) to give 9 (0.095 g, 28.1%) m.p. 85-9 °C (lit. [11] m.p. 85-6 °C); \[\beta\] anomer δ: 3.45 - 3.56 (m, 2 H, H-6',6''), 3.80 (dd, 1 H, J3,4 = 9.75 Hz, H-3, H-4), 3.95 - 4.00 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.25 Hz, H-2), 4.36 - 4.93 (m, 9 H, H-1, 4 × CH2Ph), 7.25 - 7.35 (m, 20 H, Ph) [lit. [11] \[\beta\] anomer δ: 3.50 (m, 2 H, H-6,6''), 3.81 (dd, 1 H, J3,4 = 9.8 Hz, H-3), 3.95 - 4.16 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.0 Hz, H-2), 4.68 (d, 1 H, H-1)].

The slower running band (RF = 0.36, lit. [11] RF = 0.36) afforded 10 (0.118 g, 35%) m.p. 85-7 °C (lit. [11] m.p. 84-5 °C); [α]D +13.48° (c 1, CHCl3) [lit. [11] +29.6° (c 1, CDCl3)]; \[\beta\] NMR (CDCl3) δ: 3.45 - 3.56 (m, 2 H, H-6',6''), 3.80 (dd, 1 H, J3,4 = 9.75 Hz, H-3, H-4), 3.95 - 4.00 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.25 Hz, H-2), 4.36 - 4.93 (m, 9 H, H-1, 4 × CH2Ph), 7.25 - 7.35 (m, 20 H, Ph) [lit. [11] \[\beta\] NMR (CDCl3, 300 MHz) δ: 3.50 (m, 2 H, H-6,6''), 3.81 (dd, 1 H, J3,4 = 9.8 Hz, H-3), 3.95 - 4.16 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.0 Hz, H-2), 4.68 (d, 1 H, H-1)].

The solution of 6 (0.434 g, 0.61 mmol), trimethylsilyl cyanide (1.2 ml, 0.892 g, 9 mmol), boron trifluoride etherate (5 drops) and molecular sieves 4MS in acetonitrile (6 ml) was stirred at ambient temperature for 0.5 h under argon. The reaction mixture was concentrated in vacuo and the residue chromatographed by preparative layer chromatography using hexane-ethyl acetate (3:1) as the eluent. The faster running band (RF = 0.52, lit. [11] RF = 0.52) afforded a solid, which crystallized from ethyl acetate-hexane (3:1) to give 9 (0.095 g, 28.1%) m.p. 85-9 °C (lit. [11] m.p. 85-6 °C); \[\beta\] anomer δ: 3.45 - 3.56 (m, 2 H, H-6',6''), 3.80 (dd, 1 H, J3,4 = 9.75 Hz, H-3, H-4), 3.95 - 4.00 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.25 Hz, H-2), 4.36 - 4.93 (m, 9 H, H-1, 4 × CH2Ph), 7.25 - 7.35 (m, 20 H, Ph) [lit. [11] \[\beta\] NMR (CDCl3, 300 MHz) δ: 3.50 (m, 2 H, H-6,6''), 3.81 (dd, 1 H, J3,4 = 9.8 Hz, H-3), 3.95 - 4.16 (m, 2 H, H-4, H-5), 4.10 (dd, 1 H, J1,2 = 6.0 Hz, H-2), 4.68 (d, 1 H, H-1)].

1-Deoxy-2,3,4,6-tetra-O-benzyl-α-L-galactopyranosyl cyanide (11) and 1-deoxy-2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl cyanide (12)
gon. The reaction mixture was concentrated in vacuo and the residue chromatographed by preparative layer chromatography using hexane-ethyl acetate (3:1) as the eluent. The faster running band (RF = 0.48) gave 11 as a syrup (0.07 g, 53.8%); [α]D 78 +36.7° (c 1.0, CHCl3); 1H NMR (CDCl3) δ: 3.68 - 4.16 (m, H-1, H-2, H-3, H-4, H-5, H-6), 4.48 - 4.87 (m, 4xC H2Ph), 7.17 - 7.33 (m, 20 H, 4xCPh). 13C NMR (CDCl3) δ: 65.3, 68.4, 72.7, 72.8, 73.4, 74.7, 75.2, 77.0, 79.8 (C-1), 115.4 (CN), 127.7 - 128.6 (4xCPh), 137.0, 137.7, 137.9, 138.0 (4C, ipso, Ph).

The slower running band (RF = 0.31) gave 12 [10] as syrup (0.31 g, 24%); 1H NMR (CDCl3) δ: 3.41 - 3.48 (m, 1 H), 3.54 (dd, 1 H, J2,3 = 3 Hz, J5,4 = 9.25 Hz, H-3), 3.70 - 3.72 (m, 2 H), 3.92 (t, J = 9.25 Hz, H-4), 4.02 (d, 1 H, J1,2 = 1.75 Hz, H-2), 4.22 (s, 1 H, H-1), 4.52 - 4.65 (m, 6 H), 4.84 (d, 1 H, J = 10.7 Hz), 4.95 (d, 1 H, J = 6.25 Hz), 7.15 - 7.45 (m, 20 H) [lit. [10] 1H NMR (CDCl3, 250 MHz) δ: 3.31 - 3.37 (m, 1 H), 3.45 (dd, 1 H, J2,3 = 9.3 Hz, J3,4 = 2.3 Hz, H-3), 3.61 - 3.63 (m, 2 H), 3.83 (t, 1 H, J = 9.3 Hz, H-4), 3.92 (d, 1 H, J = 2.3 Hz, H-2), 4.12 (s, 1 H, H-1), 4.43 - 4.60 (m, 6 H), 4.76 (d, 1 H, J = 10.8 Hz), 4.83 (d, 1 H, J = 11.5 Hz), 4.90 (d, J = 11.5 Hz), 7.13 - 7.48 (m, 20 H, Ph)].

Acknowledgements

The author would like to express her gratitude to Professor M. Michalska for helpful discussion. Financial support from Medical University of Łódź is gratefully acknowledged.