The Oxidation of Partially Acylated Myoinositols

Frederick Kurzer, Dennis Chapman
Royal Free Hospital School of Medicine, University of London, London NW3, England
Z. Naturforsch. 51b, 68–78 (1996); received May 17, 1995
Tetrakisacylmyoinositols, Pentakisacylmyoinositols, Acylated Myoinososes-2, Mass Spectra, Myo-inositol Esters

1,3,4,6-Tetrakis- and 1,3,4,5,6-pentakis-acylmyoinositols are obtained by the controlled catalyzed acylation of myo-inositol. The extent of the substitution depends both on the reaction conditions and the structure of the acylating agent, including steric factors. Chromic acid oxidation converts the acylmyoinositols into the corresponding 2-ketones. Under electron impact, the compounds undergo stepwise deacylation.

Introduction

The design of targeted syntheses involving cyclitols [1,2] is impeded by difficulties arising from the full substitution by hydroxy groups of their alicyclic nucleus, necessitating more or less elaborate procedures for the protection of selected groups. In the six-membered pattern, conformational differences provide a means of steering reactions into a particular course, based on contrasting reactivities of axial versus equatorial hydroxyls in the cyclohexane ring [3], acylation [4] occurring preferentially at equatorial, and oxidation at axial hydroxy-groups [1a,5].

Myo-inositol (1) conforms in both respects to this general behaviour. Esterification (and hydrolysis) occurs more rapidly at its equatorial hydroxyls [1a], while dehydrogenation by oxygen in the presence of a platinum catalyst [6] or suitable microorganisms (especially Acetobacter suboxidans) [7] is confined to its 2-ax-hydroxy group, affording myo-inososose-2 (14, R = H) [8]. γ-Irradiation also forms the 2-monoketone as the primary product, though not in isolable quantities [9]. Mild bromine oxidation produces chiefly moderate amounts of diketones [10]. In contrast to these stereospecific dehydrogenations, the action of other oxidizing agents (including permanganate [11], periodate [12], nitric acid [13], dimethyl sulphoxide [14] and photolytic oxygen [15]) commonly effect more deep-seated changes, tending to aromatization [13,14], quinone formation [13], ring cleavage [11,12,15] and complete degradation [11,12,15]. A singular case is the action of hot concentrated nitric acid, which converts myo-inositol into DL-epi-inosose in moderate yield [8,16], involving the anomalous preferential oxidation of an equatorial hydroxy group.

Results and Discussion

Our exploratory experiments aimed at restricting the action of conventional oxidizing agents to the 2-ax-hydroxy group of myo-inositol by employing equimolar (or lower) proportions of oxidant under restrained conditions, as an effective approach to the 2-monoketone, were not successful. Thus, an equivalent of aqueous chromic acid, hypobromite, permanganate or hydrogenperoxide-ferrous sulphate (Fenton’s reagent) was rapidly consumed in completely degrading a portion of the total available myo-inositol, leaving most of the remainder unaffected and recoverable (e.g. as hexacetate). Attention was therefore directed to the production and oxidation of suitable partially acylated myo-inositols, with the results reported below.

Acylation

Substitution at all six hydroxyl-groups of myo-inositol occurs readily on treatment with acyl halides or anhydrides in the presence of zinc chloride [17] or sulphuric or perchloric acid [1c]. The required partial acylation, with preservation of the free 2-ax-hydroxy-group, has now been effected in pyridine, in the presence of 4-dimethylaminopyridine as catalyst. The latter catalyzes acylations up

* Reprint requests to Dr. F. Kurzer.

0932–0776/96/0100–0068 $06.00 © 1996 Verlag der Zeitschrift für Naturforschung. All rights reserved.
to 10^4 times more effectively than pyridine itself [18], thus making the use of milder conditions accessible. Applied under specified conditions to acyl halides incorporating sufficiently bulky head groups, the procedure afforded partially acylated products retaining their free 2-ax-hydroxy group in satisfactory and reproducible yields.

Thus, 1,3,4,6-tetrapivaloylmyoinositol (3) was readily obtained by the catalyzed action of pivaloyl chloride under controlled conditions (temperature, rate of addition). Reaction did not proceed beyond the tetrasubstitution stage, in spite of the necessary use of a large excess (12 mol) of the acylating agent. The remaining free 2- and 5-hydroxy groups (of 3) underwent acetylation by acetic anhydride-zinc chloride [17] as expected, resulting in 16. This procedure was also used for preparing the hexakis(pivaloyl) compound 12 for comparison. The structure of 3 was confirmed by the symmetrical distribution of its acyl-substituents, as shown by its 13C NMR spectrum: The four pivaloyl groups produce only two low-field carbonyl singlets (δ 176.7, 176.3 ppm), while their (trimethyl)methyl moieties give rise to one pair of singlets (C of CMe_3, at 38.2, 38.1 ppm) and one pair of quartets (δ 26.9, 26.7 ppm), the latter originating collectively from the triple groups of the equivalent methyl entities. The four doublets of the cyclohexane ring carbons, two of them of double relative intensity, are assigned in accordance with the mapped spectrum of the parent compound 1 [19].

Isobutyroyl chloride, having comparable molecular dimensions, similarly produced the 1,3,4,6-tetraisobutyryl derivative (2) as the major product (35–40%), together with some 1,3,4-tris-acyl compound (15–18%), formulated in accordance with the known [20] descending reactivity towards acylation and tosylation of the hydroxyl groups of 1. With isovaleroyl chloride, however, acylation continued to the 1,3,4,5,6-penta-substituted stage 4; here, replacement of all the equatorial hydroxyl groups may be promoted by the reduced steric hindrance operating between the bulky head groups of the substituents, due to their increased distance from the central cyclohexane ring. This apparent steric influence is further emphasized by the behaviour of linear aliphatic acyl halides, which effected hexa-acylation (to 9–11). Ethyl chloroformate, described as a reagent of choice [21] for preferentially acylating equatorial over axial hydroxy groups, did not differentiate between them in the present instance, giving 8 in low yield.

In the aromatic series, the catalyzed acylation afforded 1,3,4,5,6-pentakisbenzoylmyoinositol (5–7) as sole products consistently in high yield (80–90% for 5, 6). The use of smaller proportions of acylating agent at lower temperatures still effected penta-acylation, though in diminished yields. The structure of the pentakisbenzoyl-compound 5 (and that of its isovaleroyl-analogue 4) was confirmed by their 13C NMR spectra (see Experimental). Both compounds underwent further mono-acylation (to 18 and 17, respectively). Attempts to obtain a monobenzoyl derivative of 1 by the use of a large excess of myoinositol at 0–10 °C were unsuccessful, the benzoyl chloride being recovered as the anhydride.
Oxidation

The remaining free 2-ax-hydroxy-group of the foregoing acylated myoinositols readily underwent oxidation. The action of Fieser's chromic acid reagent [22] converted the reactants (3–5) into the corresponding 2-ketones (13–15) in good yield, contrasting with the difficulty of accomplishing this reaction with the parent compound (see above). The 2-ax-5-eq-dihydroxy compound 3 gave the monoketone 13, even though more than sufficient oxidant was employed to produce the 2,5-diketone, thus illustrating again the greater susceptibility to oxidation of axial over equatorial hydroxy groups in cyclohexane. The pentakisisovaleroyl-2-ketone 14 was converted into the parent inosose-2 (14, R = H) by alkaline hydrolysis, but the well-documented difficulty [6,8] of isolating this compound as its phenylhydrazone, especially on the small scale, impaired the yields (35%).

Mass Spectra

Under electron impact, cyclohexanol [23] and cyclohexanone [24] as well as the inositols [25] are ring-cleaved, with the production of such fragments as \(\text{CH}_2=\text{CH}-\text{CH}=\text{OH}^+ \) [23] of \(\text{CH}_2=\text{CH}-\text{C}=\text{O}^+ \) [24] from the former, and of \(\text{HOCH}=\text{CH}-\text{CH}=\text{OH}^+ \) (m/z 73) from the latter [25]. In contrast, the present myoinositol esters underwent a multi-stage fission, with prevailing retention of their alicyclic ring structure: their base peaks correspond almost invariably to the intact molecular ion, while subsequent prominent signals indicate the sequential removal of their peripheral substituents as acyl-or acyloxy entities, or elimination of the elements of the appropriate carboxylic acid, and occasional loss of water. While the sequence of these events is clear, there remains some uncertainty concerning the precise position isomerism of the intermediate ionic fragments, depending on which of two or more identical acyl groups is removed preferentially in any fission stage. These uncertainties are reduced, but not entirely removed, by a comparison of the mass spectra of acylmyoinositol with those of their analogues incorporating a differentiating structural element, such as a keto group (e.g. in 13–15) or an acyl group distinct from the others (e.g. in 16–18).

Thus, pentakisisovalerylmyoinositol (4) and its corresponding 2-ketone (14) give rise to a matching series of signals consistently 2 mass units apart (Table I), suggesting a strictly parallel fragmentation sequence for both structures, and the consequent likely retention of the 2-keto- and hence the 2-hydroxy-group (in 14 and 4 respectively) and their immediate structural environment during the fission. The same consistency, though over a narrower range, is seen in the case of the pentakisbenzoyl pair of compounds (5,15).

The initial fragmentation stage of mixed acetylcymyoinositols (16,17) provides the following information (Scheme 1): The ion radical 17a of the 2-acetyl-1,3,4,5,6-pentakisovaleroyl derivative 17 undergoes simultaneous loss of an isovaleroyloxy-or acetoxy-moiety, yielding 17b and 17c respectively. The former is the greatly predominating fission, 17b producing the base peak (compared with a 15% abundance of 17c). In the 2,5-diacetyl-1,3,4,6-tetraisovaloyl compound 16, the acetyl groups are again preferentially retained, favouring
the formation of 16b. Its possible formulation as 16d (C_{26}H_{43}O_9, m/z 499.2909), which would arise from 16a by loss of an acetoxy and acetyl fragment, is excluded by high-resolution measurement of its exact mass (C_{25}H_{39}O_{10}, found: m/z 499.2543). Provided that these observed effects are not due to differences in the bulk of the acyl groups concerned, they suggest a tendency for the preferred, though not exclusive, removal of the substituents from the sides rather than the apexes of the chair conformations.

On the basis of the foregoing considerations, a specimen fragmentation scheme is tentatively proposed for the pentakisisovaleroyl derivative 4 as a representative pattern (Scheme 2). The spectrum is dominated by the molecular ion 4a, which produces the base peak, and by species arising therefrom by loss of an acyloxy or acyl radical, forming 4d and 4b, respectively. Subsequent comparable steps account for all the significant signals, finally yielding C_{11}H_{15}O_{14}^+ formulated as the dihydroxy-isovaleroyl species 4k. The molecular formulae of

<table>
<thead>
<tr>
<th>4</th>
<th>14</th>
<th>5</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/z</td>
<td>Abundance</td>
<td>m/z</td>
<td>Abundance</td>
</tr>
<tr>
<td>623</td>
<td>100</td>
<td>621</td>
<td>70</td>
</tr>
<tr>
<td>607</td>
<td>7</td>
<td>605</td>
<td>4</td>
</tr>
<tr>
<td>539</td>
<td>22</td>
<td>537</td>
<td>2</td>
</tr>
<tr>
<td>521</td>
<td>13</td>
<td>519</td>
<td>8</td>
</tr>
<tr>
<td>499</td>
<td>58</td>
<td>497</td>
<td>100</td>
</tr>
<tr>
<td>483</td>
<td>7</td>
<td>481</td>
<td>5</td>
</tr>
<tr>
<td>415</td>
<td>22</td>
<td>413</td>
<td>14</td>
</tr>
<tr>
<td>397</td>
<td>7</td>
<td>395</td>
<td>38</td>
</tr>
<tr>
<td>313</td>
<td>4</td>
<td>311</td>
<td>34</td>
</tr>
<tr>
<td>211</td>
<td>11</td>
<td>209</td>
<td>38</td>
</tr>
</tbody>
</table>

Table I. Correspondence of ion fragments of acyl-myoinositols (4, 5) and their 2-ketones (14, 15).

Scheme 2.
the key-intermediates 4d and 4g (which feature also significantly in the mass spectra of 3, 12 and 17) were confirmed by measurement of their accurate masses. The ketone 14 corresponding to 4 undergoes a precisely parallel degradation, the last four stages of which (14g-14k, formed incidentally in greater abundance than 4g-4k), are included in Scheme 2 for comparison.

The proposed scheme accounts satisfactorily for the salient features of the fragmentation process. With the reservation that the adopted position isomerism of the structures may be subject to minor modification, it may serve as model for constructing analogous schemes for the other compounds of the series, from the numerical data and assignments recorded in the Experimental Part.

It is noteworthy that the proposed fragmentation schemes for the acylmyoinositol share their essential characteristics with those of monosaccharide esters [26]. In particular, the degradation of peracetylpyanoses [27, 28] and analogues [29] is characterized by the rapid loss of acetyl and acetate moieties, as well as acetic acid, with marked initial retention of the cyclic structure [27]; however, the pyranose nucleus appears to undergo significant parallel and subsequent ring fission [27, 28] that is not prominent in the homocyclic acylmyoinositol structure.

Experimental

Melting points are uncorrected. Light petroleum had b.p. 60–80 °C. Analysis specimens were desolvated at 100–120 °C in a vacuum for 2–4 h, if necessary.

Infrared spectra were measured on a Unicam 1000 instrument, using KBr discs. Unassigned peaks are not recorded except for selected compounds (3, 13, 5, 15).

Mass spectra were determined using a VG-ZAB-2F instrument operating at 70 eV. Numbers in square brackets denote the intensity of the peaks relative to the base peak [100]. Molecular formulae were confirmed and ion fragments identified, in appropriate cases, by the determination of accurate molecular weights by the fast atom bombardment technique, involving the use of a 3-methyl-1-nitrobenzene-sodium matrix.

13C NMR spectra were determined on a Bruker WM 250 Fourier transform instrument equipped with an Aspect 3000 data system, at 62.89 MHz. The solvent was deuterio-dimethyl sulphoxide.

The numerical data recorded refer to the proton noise decoupled chemical shifts and first order multiplicities of the individual signals. Chemical shifts are given in δ (ppm) downfield from SiMe$_4$ as internal standard.

I,3,4,6-Tetrakis(pivaloyl)myoinositol (3)

A stirred solution of myoinositol (3.6 g, 0.02 mol) and 4-dimethylaminopyridine (0.3 g) in pyridine (80 ml), preheated to 90 °C, was treated dropwise during 1 h with pivaloyl chloride (28.9 g, 0.24 mol; ca. 20 drops/min), the mixture being kept at 90–95 °C by heating as necessary. Stirring at this temperature was continued for 1 h, and the reaction mixture containing crystalline solid added to ice (350 g) – concentrated hydrochloric acid (80 ml). The precipitated oil was extracted with ether, the ethereal extracts washed with M sodium hydroxide (removal of pivaloic acid) and with water to neutrality. Removal of the ether gave a crystalline solid enveloped in a resin. Dissolution in boiling ethanol (30 + 20 + 10 ml) deposited microcrystalline 3, m.p. 260–264 °C (sintering from 250 °C, somewhat rate-dependent) (3.8–4.6 g, 35–42%).

C$_{26}$H$_{44}$O$_{10}$ (516.6)

Calcd C 60.45 H 8.65% M 516.

Found C 60.8 H 8.7% M 516.

13C NMR: 176.7 s, 176.3 s (CO at C-1,3 and C-4,6); 71.4 d, 71.2 d (double relative intensity; CH respectively of C-1,3 and C-4,6 or vice versa); 26.9 q, 26.7 q (Me$_3$ of Me$_3$C at C-1,3 and C-4,6 or vice versa).

2,5-Bisacetyl-1,3,4,6-tetrakis(pivaloyl)myoinositol (16)

A stirred suspension of 3 (0.52 g, 0.001 mol) and anhydrous zinc chloride (1 g) in acetic anhydride (12 ml) was kept at 75–80 °C for 45 min, its colour
changing gradually to dark brown. It was quenched with water (50 ml) and stirred, when the precipitated oil changed to a pale brown solid (0.52 g, 87%), yielding 16 as microprisms, m.p. 296–300 °C (from acetone – ethanol).

\[C_{30}H_{48}O_{12} (600.7) \]
Calcd C 60.0 H 8.05% M 623.3043 (incldg. Na)
Found C 60.6 H 8.2% M 623.3040

IR: 3460 m blunt (H2O); 2990 vs, 2950 s sh, 2880 m sh, 1485 vs, 1470 s (CH3,CH2); 1770–1750 vs (C=O); 1400 s, 1375 vs (CMe3), 1285 vs, 1240–1215 vs mult (C–O), 1175–1140 vvs mult, 1040 vs cm\(^{-1}\).

\[m/z: 623 \ [100] \ (M^+ +23,Na), 624 \ [33] \ (C30), 581 \ [4] \ (M+23+3, MeCO+1,H), 541 \ [37] \ (M-59, MeCOO), 521 \ [4] \ (M+23–102, Me_2C.COOH), 499 \ [52] \ (M-101, Me_2C.CO+1), 289 \ [18] \ (373–85+1), 211 \ [9] \ (415–2x102). \]

1,3,4,6-Tetrakispivaloylmyoinosose-2 (13)

To a stirred solution of 3 (1.63 g, 0.003 mol) in glacial acetic acid (50 ml) at 90 °C, chromium(VI)oxide (0.60 g, 0.006 mol, equivalent to 0.009 g. atoms available oxygen) was added. The mixture was stirred at this temperature for 20 mins, the oxidant dissolving gradually. The deep olivegreen liquid was added to ice-water (150 ml) containing sodium metabisulphite (1–2 g). The resulting finely divided precipitate gave, on crystallization from acetone-ethanol (ca. 25 and 10 ml per g, and partial evaporation), opaque microprisms of 13 (1.05–1.15 g, 70–75%), m.p. 250–254 °C (sintering and turning brown from 220 °C, decomposing to a dark brown mass).

\[C_{26}H_{42}O_{10} (514.6) \]
Calcd C 60.7 H 8.2% , Found C 60.3 H 8.6% M 514.

IR: 3480 ms (OH), 3000 vs, 2995 s, 2960 ms sh, 1480 s, 1470 s (CH3,CH2); 1770–1720 vs (C=O ester and ring), 1280–1270 vs mult (C–O ester), 1230–1215 vs vb mult, 1205 vs (C–O ester), 1170, 1165 vs d cm\(^{-1}\) (the last the only difference from the IR spectrum of the tris-compound).

\[m/z: 942 \ [7] \ (2xM+23, Na-1), 483 \ [100] \ (M^+ +23), 484 \ [24] \ (C22), 443 \ [12] \ (M-17, OH), 413 \ [4] \ (M+23–71, C3H7CO+1,H), 395 \ [7] \ (413–18, H2O), 373 \ [14] \ (443–71 + 1 or M-87, C3H7COO), 303 \ [2] \ (373–71 + 1), 285 \ [2] \ (377–88, C3H7COOH or 303–18). \]

The aqueous filtrate from 13 slowly deposited crystalline solid (0.6–0.7 g, 15–18%), which gave white 1,3,4-trisisobutyrylmyoinositol, m.p. 200–202 °C (from a little ethanol).

\[C_{22}H_{36}O_{10} (460.5) \]
Calcd C 57.4 H 7.9%, Found C 57.8 H 8.0%.

IR: 3500–3350 vs with max. at 3480 (OH), 3000 vs, 2950 s sh, 2900 ms sh, 1480 s (CH3,CH2), 1770–1720 vs (C=O ester), 1400 s, 1360 s d (CMe2), 1280 vs (C–O ester), 1210–1070 vs vb mult, 980 m (sharp) (the last the only difference from the IR spectrum of the tris-compound).

\[m/z: 942 \ [7] \ (2xM+23, Na-1), 483 \ [100] \ (M^+ +23), 484 \ [24] \ (C22), 443 \ [12] \ (M-17, OH), 413 \ [4] \ (M+23–71, C3H7CO+1,H), 395 \ [7] \ (413–18, H2O), 373 \ [14] \ (443–71 + 1 or M-87, C3H7COO), 303 \ [2] \ (373–71 + 1), 285 \ [2] \ (377–88, C3H7COOH or 303–18). \]

In this example, the molar proportion of R.COCI had to be kept low, since the usual large excess (12 moles) under identical conditions produced the hexakis-derivative 11, m.p. 179–181°C (yield 90%). Lit. [17] m.p. 181°C (For IR, m/z, see below).

1,3,4,5,6-Pentakis-isovaleroylmyoinositol (4)

The use of isovaleroyl chloride (16.9 g, 0.14 mol) in the procedure described for 3 above (temperature kept at 95–90°C for the first, and 90–85°C for the second half hour; stirring at 80°C continued for 20 min) gave a pink to brown liquid which was filled with a crystalline precipitate on cooling. Its addition to ice-concentrated hydrochloric acid produced a soft resin, converted on stirring with fresh water to a buff granular solid (ca. 12 g). Its solution in ethanol (30 ml) gave opaque microprisms (6–6.5 g, 50–54% of 4, m.p. 200–202°C (sintering from 196°C). Spontaneous evaporation of the motherliquors gave a resin enveloping some solid; preferential removal of the former with cold ethanol gave more 4 (10–15%).

C$_{33}$H$_{54}$O$_{12}$ (600.8)
Calcd C 62.0 H 8.7%, Found C 61.9 H 8.7%.

IR: 3520 s vbr (OH), 2980 vs, 2880 ms, 1780–1755 vs mult (C=O ester), 1375 vs (CMe$_2$), 1230 vs, 1210–1160 vs mult, 1125–1110 vs mult (C–O ester) cm$^{-1}$.

For m/z, see Table I and Scheme 2.

13C NMR: 171.3 s, 171.0 s (double relative intensity; CO at C-1,3 and C-4,6); 170.8 s (CO at C-5); 70.7 d, 68.9 d (double relative intensity; CH respectively of C-1,3 and C-4,6, ring); 70.1 d, 66.2 d (CH respectively of C-5 and C-2, ring); 42.5 t, 42.3 t (double relative intensity, CH$_2$ of CH$_2$CHMe$_2$ at C-1,3 and C-4,6 or vice versa); 42.2 t (CH$_2$ at C-5); 25.0 d, 24.9 d (double relative intensity, CH of CH$_2$CHMe$_2$ at C-1,3 and C-4,6 or vice versa); 24.7 d (CH at C-5); 21.95 q, 21.9 q (double relative intensity, CH$_3$ of CH$_2$CHMe$_2$ at C-1,3 and C-4,6 or vice versa); 22.0 q (CH$_3$ of CH$_2$CHMe$_2$ at C-5).

2-Acetyl-1,3,4,5,6-pentakis-isovaleroylmyoinositol (17)

A solution of 4 (0.60 g, 0.001 mol) in acetic anhydride (15 ml) was stirred with anhydrous zinc chloride (1 g) at 80–75°C for 45 min and the dark brown liquid added to warm water. The crystalline precipitate gave prisms (0.41 g, 64%) of 17, m.p. 102–105°C (from very little ethanol).

C$_{37}$H$_{53}$O$_{14}$ (778.8)
Calcd C 57.0 H 7.0 N 7.2%, Found C 56.9 H 7.1 N 6.9%.

IR: 3450 ms br blunt (H$_2$O), 2970 vs – 2900 s, 1475 s (CH$_3$, CH$_2$), 1775–1750 vs br (C=O, ester), 1375 vs (CMe$_2$), 1230 vs, 1210–1160 vs mult, 1130–1100 vs br (C=O, ester) cm$^{-1}$.

1,3,4,5,6-Pentakis-isovaleroylmyinosose-2 (14)

A solution of 4 (2.4 g, 0.004 mol) in glacial acetic acid (35 ml) was stirred at 85–80°C with suspended chromium(VI)oxide (0.67 g, 0.0067 mol; 0.01 g-atom of available oxygen), so as to crush and gradually dissolve the oxidant. The brown liquid was kept at 70°C for another 15 min, allowed to cool and stirred into water containing sodium metabisulphite (1 g). The precipitated finely divided solid (ca. 2 g) gave silky needles of 14 (yield 60%), m.p. 118–124°C (from ethanol).

C$_{31}$H$_{49}$O$_{11}$ (598.7)
Calcd C 62.2 H 8.4%, Found C 62.7 H 8.4%.

IR: 3450 m br blunt (H$_2$O), 2970 vs – 2880 ms, 1475 s (CH$_3$, CH$_2$), 1780–1755 vs mult (C=O ester and ketone), 1380 ms (CMe$_2$), 1205–1160 vs mult, 1125–1110 vs mult (C–O ester) cm$^{-1}$.

For m/z, see Table I and Scheme 2.

To a boiling solution of 14 (0.30 g, 0.0005 mol) in ethanol (15 ml) 2,4-dinitrophenylhydrazine (0.12 g, 0.0006 mol) was added, followed by concentrated hydrochloric acid (6 drops), and boiling of the resulting orange solution continued for 5 min. The yellow solid (0.35 g) which separated slowly gave bright-yellow needles of the 2',4'-dinitrophenylhydrazone of 14, m.p. 192–196°C (decomp) (from ethanol).

C$_{37}$H$_{53}$N$_4$O$_{14}$ (778.8)
Calcd C 57.0 H 7.0 N 7.2%, Found C 56.9 H 7.1 N 6.9%.
Myoinosose-2 (14, R = H)

The foregoing penta-acyl ketone 14 (1.8 g, 0.003 mol), dissolved in ethanol (25 ml), was treated with a solution of sodium (0.46 g, 0.02 g-atom) in methanol (20 ml) and boiled under reflux for 1 h. The solution was distilled to small volume (ca. 10 ml), diluted with water (10 ml), acidified with 5 M hydrochloric acid, and extracted with ether (removal of isovaleric acid). The aqueous phase was again concentrated (to 12–15 ml), and gave, on addition of glacial acetic acid (2 ml) and phenylhydrazine, m.p. 172–175 °C (decomp) (0.28 g, 35%). Lit. [17] m.p. 100 °C.

C_{12}H_{16}N_{2}O_{5} (268.2)
Calcd N 10.45%,
Found N 10.2%.

1,2,3,4,5,6-Hexakis-acylmyoinositol

The use, in the foregoing catalyzed procedure, of acyl chlorides terminating in smaller acyl groups resulted exclusively in hexakisacyl derivatives in variably moderate yields. Each of the following known [17] compounds had the correct percentage composition.

Hexakisacylmyoinositol (9). – (12 moles RCOCI, 40–50 °C, 1 + 3 h, yield 40%), m.p. 214–216 °C (from ethanol), Lit. [17] m.p. 212 °C.

IR: 3480 s (H 20), 3000, 2980 w d, 1445 m (CH3), 1380–1345 s mult, 1110 vs-1090 s br cm-1.

Hexakis-n-butyrylmyoinositol. – (12 moles RCOCI, 60–70 °C, addition 1.5 h, stirring at ambient temperature, 1.5 h, yield 17%), m.p. 88–92 °C (from ethanol-light petroleum). Lit. [17] m.p. 81 °C.

Hexakis-isobutyrylmyoinositol (10). – (12 moles RCOCI, 60–70 °C, 1.5 h + 1 h, yield 47%), m.p. 112–113 °C (from ethanol – light petroleum); Lit. [30] m.p. 131–135 °C.

IR: 3450 s br (H 20), 3000 s, 2960 m sh, 1485 ms (CH3, CH2), 1785–1740 vs mult (C=O ester), 1170–1120 vbr mult cm-1.

IR: 3400 s br (H 20), 3000 s, 2960 m sh, 1485 ms, 1455 ms (CH3, CH2), 1785–1730 vs mult (C=O ester), 1320–1240 vs mult (C=O ester), 1385 vs cm-1.

1,2,3,4,5,6-Hexakis(pivaloyl)mynoisitol (12)

A suspension of 1 (1.80 g, 0.01 mol) and anhydrous zinc chloride (2 g) in pivaloyl chloride (14.5 g, 0.12 mol) was boiled under reflux for 1.5 h. The resulting suspended sponge-like yellow mass, nearly solidifying on cooling, was taken up in successive portions of ether (with addition of M-hydrchloric acid, removal of zinc salt), the ethereal layer washed with 1.5 M sodium hydroxide (removal of pivaloic acid) and to neutrality with chloric acid, removal of zinc salt), the ethereal layer washed with 1.5 M sodium hydroxide (removal of pivaloic acid) and to neutrality with water. Removal of the solvent gave 12 (3.1 g, 45%) as massive prisms, m.p. 228–232 °C (from ethanolic). More prolonged boiling (2.5 h) did not improve yields, and caused some resification.

C₃₆H₆₀O₁₂ (684.9)
Calcd C 63.1 H 8.8%
Found C 63.6 H 8.9%

IR: 3480 w br (H₂O), 3000 vs, 2960 ms sh, 2890 m sh, 1485 vs, 1470 s sh (CH₃), 1760–1715 vs mult (C=O ester), 1375 s, 1362 s (CMe₃), 1290 m sh, 1485 vs, 1470 s sh (CH₃, CH₂), 1760–1730 vs d (C=O ester), 1320 s sh, 1290–1250 v br (C–O ester), 710 vs, 685 ms (Ph), 1000 mw, 975 mw, 940 mw, 920 w (diagnostic quartet), 1610 ms, 1590 m, 1500 mw, 1455 s, 1180 s, 1120–1090 vs mult, 1030 s cm⁻¹.

Aromatic Series
1,3,4,5,6-Pentakis(benzoyl)mynoisitol (5)

To a stirred solution of 1 (3.6 g, 0.02 mol) and 4-dimethylaminopyridine (0.2 g) in pyridine (40 ml), benzoyl chloride (22.5 g, 0.16 mol) was added at room temperature dropwise during 25–30 min. The rising temperature was kept at ca. 50 °C by external cooling. Stirring at room temperature was continued for another 30 min and the resulting paste treated with ice concentrated hydrochloric acid (300 and 60 ml). The separated viscous material hardened and broke up to white granules on being stirred for 1–2 h. This was boiled with ethanol (80 ml, removal of benzoic acid) and the undissolved fraction (m.p. 248–252 °C, ca. 12.5 g, 90%) crystallized from acetone – ethanol (250 and 100 ml), producing successive crops of 5, m.p. 256–260 °C (sintering from ca. 245, clearing at 270 °C, somewhat rate-dependent) (total 11.2–11.9 g, 80–85%, lustrous prisms, disintegrating to a white opaque powder on drying).

C₄₁H₃₂O₁₁ (700.7)
Calcd C 70.3 H 4.6%
Found C 70.4 H 4.6%

The compound is formed as a byproduct in the production of the hexakis- [31], m.p. 269 °C and 1,3,4,5-tetakisbenzoylmyoinositol [32], and by reduction of the corresponding pentabenzoylmyo-inosose-2 [33], m.p. 260 °C.

IR: 3480–3420 s vbr (OH), 3080 w, 2980 w (CH₂=), 1750–1730 vs d (C=O ester), 1320 m, 1290–1250 vs vbr (C–O ester), 710 m, 685 ms (Ph), 1000 ms, 975 mw, 940 mw, 920 w (diagnostic quartet), 1610 ms, 1590 m, 1500 mw, 1455 s, 1180 ms, 1120–1090 vs mult, 1030 s cm⁻¹.

¹³C NMR: 165.3 s, 165.0 s (double relative intensity, CO at C-1,3 and C-4,6 or vice versa), 164.9 s (CO at C-5); 72.0 d, 70.6 (double relative intensity, CH respectively of C-1,3 and 4,6), 71.1 d, 66.8 d (CH respectively of C-5 and C-2); Aromatic signals: 133.7 d, 133.6 d (double relative intensity, C-4' at C-1,3 and C-4,6 or vice versa), 133.8 d (C-4' at C-5), 129.0 s, 128.6 s (double relative intensity, C-1' at C-1,3 and C-4,6 or vice versa), 128.4 s (C-1' at C-5), 129.2 d, 128.9 d, 128.8 d, 128.7 d, 128.6 d (collectively assigned to C-2' and C-3' of pairs of Ph at C-1,3 and C-2,4 and Ph at C-5).

The use of smaller proportions of benzoyl chloride under more restrained conditions gave in each case the same product 5 in diminished yields. In experiments employing 1 or 2 moles of benzoyl chloride at 0–10 °C, the solid product was dibenzoyl anhydride (80 or 90% on the basis of the benzoyl chloride used), m.p. 38–40 °C (from benzene – light petroleum).

2-Acetyl-1,3,4,5,6-pentakis(benzoyl)mynoisitol (18)

This was prepared from 5 by the zinc chloride – anhydride procedure (described for 17 above), and formed opaque microprisms (95%) m.p. 256–259 °C (from acetone – ethanol). Lit. [33] m.p. 166–167 °C.
C₄₃H₃₄O₁₂ (742.0)
Calcd C 69.5 H 4.6%,
Found C 69.9 H 4.6%.

IR: 3460 m vbr blunt (H₂O), 3080, 2990 w (CH₃, CH=), 1750–1730 vs (C=O ester), 1320 ms, 1285 vs mult, 1230 ms (C–O ester), 710 vs, 690 ms (Ph), 1120–1095 vs mulc cm⁻¹ (almost identical with IR of 5, but lacking the “diagnostic quartet”).

m/z 765 [100] (M⁺ + 23, Na), 766 [47] (C₄₃), 683 [28] (M-59, MeCOO), 621 [64] (M-121, PhCOO), 622 [26] (C₃₆), 579 [6] (683-105, PhCO + l, H₂O).

1.3.4.5.6-Pentakisbenzoylmyoinosose-2 (15)
A solution of 5 (1.05 g, 0.0015 mol) in glacial acetic acid (35 ml) at 95 °C was stirred with chromium(VI)oxide (0.15 g, 0.0015 mol, 0.0023 g-atom O) for 20 min, the oxidant dissolving gradually. The brown liquid was set aside for 30 min, then stirred into ice water containing sodium metabisulphite (1 g). The finely divided precipitate (1.0 g, 95%, m.p. ca. 218–222 °C) was crystallized from nitrobenzene - ethanol (5 ml each, recovery 90%) or acetone - benzene (100 and 20 ml) giving felted needles of 15, m.p. 218–224 °C. Very sparingly soluble in ethanol, acetone.

C₄₁H₃₀O₁₈ (698.7)
Calcd C 70.5 H 4.3% M 721.1686 (including Na),
Found C 71.0 H 4.5% M 721.1682.

IR: 3450 s vbr (OH), 1780-1750 vs (C=O), 1545–1530 vs (arom. NO₂, asym), 1360–1345 vs, 1325 s (arom. NO₂, sym), 1290-1250 vs mult (C–O ester), 870 vs, 845 s (1,4-disub. Ar), 780 mw, 715 vs (Ar), 1125–1090 vs mult, 1015 s cm⁻¹.

m/z 721 [100] (M⁺ + 23, Na), 722 [45] (C₄₁), 617 [19] (M + 23–105, PhCO + 1), 599 [38] (M + 23–122, PhCOOH or 617–18, H₂O), 577 [26] (M-121, PhCOO or 594, i.e. M-105 + 1, – 17 OH), 479 [45] (599–121 + 1), 462 [90] (479–17).

1,3,4,5,6-Pentakis(p-nitrobenzoyl)myoinositol (6)
was obtained as 5 (0.01 molar scale), using p-nitrobenzoyl chloride (0.06 mol), at 60–70 °C (addition 10 min, further heating in this range for 20 min, continued stirring 30 min). The crude precipitate gave, after extraction with 0.5 M sodium hydroxide and washing with hot water, an ivory product (m.p. ca. 275 °C, 8.5 g, 92%). Crystallization from nitrobenzene – ethanol (6 and 1 ml per g, recovery 70%) gave 6, m.p. 278–285 °C (decomp., rate-dependent). Almost insoluble in the usual solvents.

C₄₁H₂₇Br₅O₁₈ (1095.3)
Calcd C 45.0 H 2.5%,
Found C 45.1 H 2.5%.

IR: 3460 s vbr (OH), 1750–1720 vs (C=O ester), 1545–1530 vs (arom. NO₂, asym), 1360–1345 vs, 1325 s (arom. NO₂, sym), 1290–1250 vs mult (C–O ester), 870 vs, 845 s (1,4-disub. Ar), 780 mw, 715 vs (Ar), 1125–1090 vs mult, 1015 s cm⁻¹.

Acknowledgements
We thank Mrs. J. E. Hawkes and Mr. J. Cobb, of the University of London NMR Spectroscopy Service at King’s College, London, for the production of the ¹³C NMR spectra. We are also indebted to Dr. D. Carter, of the School of Pharmacy, University of London, for performing the mass spectrometric measurements.