1,2,3-Thiadiazole mit ungesättigten Seitenketten –
Monomerbausteine für Photoresist-Materialien

1,2,3-Thiadiazole mit ungesättigten Seitenketten –
Monomeric Building Blocks for Photoresists

Norbert Hanold, Helga Kalbitz, Mousa Al-Smadi, Herbert Meier*
Institut für Organische Chemie der Universität Mainz, J.-J.-Becherweg 18–22, D-55099 Mainz
Ring Closure, Wittig Reaction

The phosphonium salts 4 are versatile reagents for the synthesis of 1,2,3-thiadiazoles 6 with ununsaturated side chains. The preparation starts with the α-chloroketones 1 which are transformed in a stepwise process to the phosphonium salts 2 and 3. The reaction with SOCl₂ leads to a regioselective ring closure 3 → 4. Subsequent Wittig reactions yield the monomers 6, which exhibit with the exception of 6ac a high tendency for a thermal polymerization. Cleavage of the ester groups in 6ca and 6cd generates the carboxylic acids 7ca and 7cd which possess a higher stability.

Polymere mit 1,2,3-Thiadiazolringen in den Seitenketten haben sich für die Photovernetzung und die Herstellung von Photoresist-, Röntgenstrahlresist- und Elektronenstrahlresist-Materialien bewährt [1–6]. Die Zahl der zur Verfügung stehenden polymerisationsfähigen Monomere mit 1,2,3-Thiadiazolringen ist allerdings gering [2, 5–9]. Aus diesem Grund haben wir ein Synthesekonzept entwickelt, das es gestattet, auf der Basis von (1,2,3-Thiadiazol-4-ylmethyl)-triphenylphosphoniumsalzen mit Hilfe der Wittig-Olefinition Ethene, 1,3-Butadiene und 1,3-Butenine mit 1,2,3-Thiadiazolresten in 1-Position herzustellen.

Dabei geht man von den α-Chlorketonen 1a–c aus. Mit Triphenylphosphin entstehen die Phosphoniumsalze 2a–c, die in CDC₃ zu 10–18% in der Enolform vorliegen. Kondensation der Carboxynukleophilie mit Hydrazincarbon säureäthylester liefert in quantitativer Ausbeute die Ethoxycarboxyhydrizinhydrzone 3a–c, die in einer Hurd-Mori-Reaktion [10, 11] mit Thionylchlorid zu den 1,2,3-Thiadiazolen 4a–c umgesetzt werden. Von den in Frage kommenden Abgangsgruppen [11] an der Hydrazonfunktion bewährt sich besonders der Ethoxycarbonylrest. Aus sterischen Gründen dominiert in 3a–c jeweils das (E)-Isomere. Die Konfiguration an der CN-Doppelbindung des Hydrazins spielt allerdings für den Reaktionsablauf keine entscheidende Rolle, da unter den gegebenen Reaktionsbedingungen eine schnelle (Z,E)-Äquilibrierung zu beobachten ist [12]. Bei 3a–c beobachtet man eine regioselektive Ringschlußreaktion auf die Methylenseite. Die Ausbeuten an 4a–c aus den Rohprodukten 3a–c betragen 60–62%. Über eine Wittig-Olefinition mit Acrolein (5a), Propargylaldehyd (5b), (E)-Zimtaldehyd (5c) oder Formaldehyd (5d) gewinnt man die Zielverbindungen 4-(1,3-Butadien-1-yl)-1,2,3-thiadiazol (6aa), 4-(1,3-Butenin-1-yl)-1,2,3-thiadiazol (6ab), 4-(4-Phenyl-1,3-butadien-1-yl)-1,2,3-thiadiazol (6ac), 4-(1-Methylvinyl)-1,2,3-thiadiazol (6bd), 4-(1,3-Butadien-1-yl)-1,2,3-thiadiazol-5-carbonsäureäthylester (6ca) und 4-Ethylbenzothiadiazol-5-carbonsäureäthylester (6cd).

Die Wittig-Reaktion ist nicht stereo selektiv. Es bilden sich in den Fällen 6aa, 6ab, 6ac und 6ca (Z/E)-Gemische, wobei die (E)-Konfiguration an dem Zimtaldehydbaustein in 6ac erhalten bleibt. Zur Erhöhung der Lagerfähigkeit empfiehlt es sich, die Ester 6ca und 6cd durch alkalische Hydrolyse in die entsprechenden Carbonsäuren 7ca und 7cd zu überführen.

Mit Ausnahme von 6ac polymerisieren alle Verbindungen 6 beim Erwärmen [13].

* Sonderdruckanforderungen an Prof. Dr. H. Meier.
Allgemeine Vorschrift für die Herstellung der Phosphoniumsalze 2a-c

(2-Oxopropyl)triphenylphosphonium-chlorid (2a)

Ausb. 84%, Schmp. 245 °C [9].

(1-Methyl-2-oxopropyl)triphenylphosphonium-chlorid (2b)

Ausb. 71%, farblose Kristalle vom Schmp. 181–182 °C. – IR (KBr): \(\nu = 3040 \text{ cm}^{-1}, 2780, 1690, 1475, 1430, 1350, 1160, 990, 750, 720, 690. \) – \(^1\)H-NMR (CDCl\(_3\)): 90:10-Gemisch aus Keto- und Enolform. Ketoform: \(\delta = 1,66 (\text{dd}, J^\alpha \beta = 7,4 \text{ Hz}, 3^\beta \text{H}, 1 \text{-CH}_3), 3,58 (\text{d}, J^\alpha \beta = 1,2 \text{ Hz}, 3 \text{-H}, 1 \text{-CH}_3), 7,61 (\text{m}, 6 \text{H}, m \text{-H}, Phenyl), 7,69 (\text{m}, 3 \text{H}, p \text{-H}, Phenyl) \) überlagert mit (m, 1H, 1-H), 7,95 (m, 6H, o-H, Phenyl). Enolform: Signale durch Ketoform teilweise überlagert; \(\delta = 2,56 (\text{s}, 3 \text{H}, 3 \text{-H}), 12,16 (\text{s}, 1 \text{H}, \text{OH}) \). – \(^13\)C-NMR (CDCl\(_3\)): Ketoform: \(\delta = 12,0 (\text{C-3}), 28,9 (\text{d}, J^\alpha \beta = 4,9 \text{ Hz}, 1 \text{-CH}_3), 42,5 (\text{d}, J^\alpha \beta = 54,6 \text{ Hz}, C-1), 117,4 (\text{d}, J^\alpha \beta = 86,2 \text{ Hz}, C_\alpha), 129,2, \text{d}, J^\alpha \beta = 12,8 \text{ Hz}/133,0, \text{d}, J^\alpha \beta = 9,8 \text{ Hz}(C_\alpha), 133,5 (\text{d}, J^\alpha \beta = 2,1 \text{ Hz}, C_p), 204,8 (\text{d}, J^\alpha \beta = 5,1 \text{ Hz}, C-2); \) Enolform: \(\delta = 13,6 (\text{d}, J^\alpha \beta = 10,2 \text{ Hz}, 1 \text{-CH}_3), 19,0 (\text{d}, J^\alpha \beta = 9,3 \text{ Hz}, C-3), 75,5 (\text{d}, J^\alpha \beta = 90,3 \text{ Hz}, C-1), 120,3 (\text{d}, J^\alpha \beta = 90,3 \text{ Hz}, C_\alpha), 128,7, \text{d}, J^\alpha \beta = 12,6 \text{ Hz}/132,6, \text{d}, J^\alpha \beta = 9,9 \text{ Hz}(C_\alpha), 133,3 (C_p), 173,0 (G-2). \)

C\(_{22}\)H\(_{22}\)ClO\(_3\) (368,8)
Ber. C 71,64 H 6,01%.
Gef. C 71,73 H 6,09%.

(3-Ethoxycarbonyl-2-oxopropyl)triphenylphosphonium-chlorid (2c)

Ausb. 78%, Schmp. 160–162 °C. – IR (KBr): \(\nu = 3050 \text{ cm}^{-1}, 2860, 2770, 1725, 1700, 1430, 1360, 1340, 1260, 1210, 1120, 1100, 1045, 1020, 750, 740, 715, 690, 680. \) – \(^1\)H-NMR (CDCl\(_3\)): 82:18-Gemisch aus Keto- und Enolform; Ketoform: \(\delta = 1,09 \) (t, 3H, CH\(_3\), Ester), 4,00 (q, 2H, OCH\(_2\)), 4,01 (s, 2H, 3-H), 6,16 (d, J\(^\alpha \beta = 11,3 \text{ Hz}, 2 \text{H}, 1 \text{-H}), 7,50 (\text{m}, 6 \text{H}, m \text{-H}, Phenyl), 7,60 (\text{m}, 3 \text{H}, p \text{-H}, Phenyl), 7,71 (m, 6 \text{H}, o \text{-H}, Phenyl); Enolform: \(\delta = 1,15 (\text{t}, 3 \text{H}, CH_3, Ester), 3,91 \) (s, 2H, 3-H), 4,08 (q, 2H, OCH\(_2\)), 4,77 (d, J\(^\alpha \beta = 18,0 \text{ Hz}, 1 \text{H}, 1 \text{-H}), \) aromat.-H durch Ketoform überlagert, 13,06 (s, 1H, OH). – \(^13\)C-NMR (CDCl\(_3\)): Ketoform: \(\delta = 13,3 \) (CH\(_3\), Ester), 39,0 (d, J\(^\alpha \beta = 59,5 \text{ Hz}, C-1), 49,0

Experimenteller Teil

IR-Spektren in KBr oder als Film: Beckman Acculab 4. – \(^1\)H- und \(^13\)C-NMR-Spektren in CDCl\(_3\): AM 400 und AC 200 der Firma Bruker. – Massenspektren EI: Direkteinlaß, 70 eV Ionisierungswnergie, MAT CH 7A der Firma Varian.
(C-3), 60.7 (OCH2), 117.6 (d, 3JPC = 89.2 Hz, Cq),
129.4, d, 3JPC = 12.8 Hz/133.0, d, 3JPC = 10.2 Hz
(Co,m), 134.1 (Cp), 166.5 (CO, Ester), 195.5 (C-2).

C24H24Cl4O4P (426,9)
Ber. C 67.53 H 5.67%
Gef. C 67.72 H 5.57%

Allgemeine Vorschrift für die Herstellung der
Hydrazone 3a–c

[2-[(Ethoxycarbonyl)-hydrazono]propyl]triphenylphosphonium-chlorid (3a)

Rohausb. ca. 100%, Schmp. 132 °C [9].

[2-[(Ethoxycarbonyl)-hydrazono]-1-methylpropyl]-triphenylphosphonium-chlorid (3b)

Rohausb. ca. 100%, Schmp. 120–125 °C (Zers.). – IR (KBr): v = 1705 cm−1, 1510, 1480, 1430, 1370, 1330, 1320, 1110, 1050, 1000, 750, 720, 690. – 1H-
NMR (CDCl3): δ = 1.07 (t, 3J = 7.0 Hz, 3H, 1-CH3), 1.50 (dd, 3J = 7.0 Hz, 3JPH = 18.8 Hz, 3H, 1-CH3), 2.18 (s, 3H, 3-H), 3.96 (q, 3J = 7.0 Hz, 2H, OCH2), 6.45 (s, breit, 1H, 1-H), 7.54 (m, 9H, p-H, Phenyl), 7.95 (m, 6H, o-H, Phenyl), 8.26 (s, 1H, NH). – 13C-NMR (CDCl3): (E)-Konfiguration: δ = 14.0 (CH3, Ester), 14.2 (C-3), 15.6 (d, 3JPC = 6.9 Hz, 1-CH3), 36.5 (d, 3JPC = 53.2 Hz, C-61), 61.0 (OCH2), 119.0 (d, 3JPC = 86.2 Hz, Cq), 129.2, d, 3JPC = 12.5 Hz/133.9, d, 3JPC = 9.6 Hz (Co,m), 133.4 (Cp), 149.1 (d, 3JPC = 6.6 Hz, C-2), 153.2 (CO).

C27H30ClN2O4P (513,0)
Ber. C 63.22 H 5.46%
Gef. C 63.16 H 6.03 N 5.46%

Allgemeine Vorschrift für die Herstellung der 1,2,3-Thiadiazole (4a–c)

Zu 1.0 mol 3a–c läßt man unter Rühren und gegebenenfalls Eiskühlung 800 ml Thionylchlorid zufließen. Man rührt bei RT 1–16 h weiter, bis die starke Gasentwicklung beendet ist. Das über­schüssige Thionylchlorid wird im Wasserstrahlvakuum gründlich entfernt und der Rückstand, wie jeweils beschrieben, aufgearbeitet.

Triphenyl[1-(2,3-thiadiazol-4-yl)methyl]-phosphonium-chlorid (4a)

Ausb. 62%, Schmp. 245–250 °C (Zers.) [9].

Triphenyl[1-(2,3-thiadiazol-4-yl)ethyl]-phosphonium-chlorid (4b)

Ausb. 60%, farblose Kristalle vom Schmp. 217–
219 °C. – IR (KBr): v = 3050 cm−1, 2840, 1480, 1430, 1100, 990, 750, 720, 690. – 1H-
NMR (CDCl3): δ = 1.60 (dd, 3J = 7.1 Hz, 3JPH = 18.3 Hz, 3H, CH3), 7.26 (m, 3J = 7.1 Hz, 3JPH = 14.4 Hz, 1H, CH), 7.34 (m, 6H, m-H, Phenyl), 7.45 (m, 3H, p-H, Phenyl), 7.65 (m, 6H, o-H, Phenyl), 9.74 (d, 3JPH = 2.0 Hz, 1H, 5-H, Thiadiazol). – 13C-NMR (CDCl3): δ = 16.8 (CH3), 28.5 (d, 3JPC = 48.2 Hz, CH), 116.9 (d, 3JPC = 84.2 Hz, Cq), 129.5, d, 3JPC =
12,5 Hz/133,8, d. \(J_{PC} = 9,5 \) Hz (C\(_{O \mu m}\)), 134,2 (d, \(J_{PC} = 1,8 \) Hz, C\(_3\)). 139,1 (d, \(J_{PC} = 8,0 \) Hz, C-5, Thiadiazol), 156,8 (d, \(J_{PC} = 5,5 \) Hz, C-4, Thiadiazol).

C\(_{23}\)H\(_{23}\)ClN\(_2\)S (410,9)
Ber. C 51,97 H 4,30 N 20,23%
Gef. C 51,97 H 4,30 N 20,23%.

\[(5\text{-Ethoxycarbonyl-1,2,3-thiadiazol-4-yl)methyl}][triphenylphosphonium-chlorid (4e)\]

Ausb. 62%, farblose Kristalle vom Schmp. 167 °C. – IR (KBr): \(\tilde{\nu} = 3040 \text{ cm}^{-1}, 2980, 2915, 1710, 1500, 1430, 1275, 1230, 1110, 1080, 1030, 995, 790, 755, 740, 730, 720, 710, 690. – 1\(^H\)-NMR (CDCl\(_3\)): \(\delta = 1,05 \) (t, 3H, CH\(_3\)), 4,01 (q, 2H, OCH\(_2\)), 5,01 (m, 4H, PCH\(_2\)), 7,43 (m, 6H, m-H, Phenyl), 7,64 (m, 6H, o-H, Phenyl), – 13C-NMR (CDCl\(_3\)): \(\delta = 13,6 \) (CH\(_3\), Ester).

\(J_{PC} = 117,3 \) Hz, C\(_3\)). 129,8, d. \(J_{PC} = 12,7 \) Hz/133,5, d. \(J_{PC} = 10,4 \) Hz (C\(_{O \mu m}\)). 134,8 (d, \(J_{PC} = 2,1 \) Hz, C\(_3\)). 142,5 (d, \(J_{PC} = 6,8 \) Hz, C-5, Thiadiazol), 153,6 (d, \(J_{PC} = 8,4 \) Hz, C-4, Thiadiazol), 158,2 (CO).

C\(_{23}\)H\(_{23}\)ClN\(_2\)S (468,9)
Ber. C 61,47 H 4,73 N 5,97%
Gef. C 61,57 H 4,91 N 5,89%.

Allgemeine Vorschrift für die Wittig-Reaktion von 4a mit den Aldehyden 5a-c zu 6aa–ac

Zu 1,15 g (0,05 mol) Natrium in 150 ml absolutem Methanol werden unter Rühren, Eiskühlung und Argon 19,8 g (0,05 mol) 4a zugegeben. Man rührt ohne Kühlung 15 min weiter und fügt 0,05 mol der Carbonylkomponente 5a–c in 50–100 ml absolutem Methanol hinzu. Am Ende der Reaktion (3–5 h, DC-Kontrolle) tropft man 5 ml konz. Salzsäure zu, entfernt das Methanol, behandelt den Rückstand mit Diethylether/Petrolether (30–60) und filtriert das auskristallisierte Triphenylphosphinoxid ab. Die organische Phase wird mit MgSO\(_4\) getrocknet und das Lösungsmittel im Vakuum entfernt. Das rohe 1,2,3-Thiadiazol wird durch Säulenchromatographie oder Destillation gereinigt.
Bei der Umsetzung von 4a mit (E)-Zimtaldehyd 5c erhält man farblose Kristalle von 6ac. Bei einem (1 E,3 E)/(1 Z,3 E)-Verhältnis von 42:58 beträgt die Gesamtausbeute 88%. – IR (KBr): \(\tilde{\nu} = 3100 \text{ cm}^{-1}, 3020, 1470, 1440, 1230, 995, 985, 895, 845, 825, 790, 750, 690. – MS (EI, 70 eV): m/z = 210 (M⁺ 36%), 182 (10), 110 (27), 109 (100), 108 (25).

\[
\text{C}_4\text{H}_{10}\text{N}_2\text{S} (214,3) \\
\text{Ber. C 47,59 H 4,79 N 22,20%}, \\
\text{Gef. C 47,65 H 4,63 N 22,06%}.
\]

Allgemeine Vorschrift für die Wittig-Reaktion von 4c mit den Aldehyden 5a/d zu 6ca/6cd

Zu 140,7 g (0,3 mol) 4c, gelöst in 500 ml wasserfreiem Ethanol, wird unter Kühlung und Argon 33,6 g (0,6 mol) frisch destilliertes 5a zugegeben bzw. 18,0 g (0,6 mol) frisch monomerisierter Formaldehyd (5d) eingeleitet. Unter Kühlung und Argon wird dazu eine Lösung aus 6,9 g (0,3 mol) Natrium in 150 ml wasserfreiem Ethanol getroffen. Man rührt 1 h bei RT, entfernt das Lösungsmittel im Rotationsverdampfer, versetzt den Rückstand mit Diethylether/Petrolether 30/60 (1:1) und läßt das Triphenylphosphinoxid auskristallisieren. Nach Filtration wird die Lösung eingeengt und chromatographiert (Kieselgel, Diethylether/Petrolether 30/60, 1:1).

\[
\text{(Z/E)-4-(1,3-Butadien-1-yl)-1,2,3-thiadiazol-5-carbonsäureethylester (6ca)}
\]

Ausb. 8,2 g (13%), (Z/E)-Verhältnis 30:70, Schmp.: 40–47 °C. – IR (rein): \(\tilde{\nu} = 2960 \text{ cm}^{-1}, 1705, 1610, 1580, 1480, 1410, 1355, 1320, 1270, 1200, 1150, 1070, 1025, 1000, 950, 925, 860, 805, 760. – 1H-NMR (CDCl₃): \(\delta = 1,14 \text{ (t, 3 H, CH₃)} \), 4,12 (q, 2 H, OCH₂), 5,17 (dd, \(\delta_{cis} = 10,5 \text{ Hz}, \delta = 0,6 \text{ Hz}, 1 \text{ H, =CH₂} \)), 5,33 (dd, \(\delta_{trans} = 17,5 \text{ Hz}, \delta = 0,6 \text{ Hz}, 1 \text{ H, =CH₂} \)), 6,35 (m, 1 H, =CH), 6,99 (dd, \(\delta_{trans} = 15,6 \text{ Hz}, 1 \text{ H, =CH} \)), 7,43 (dd, \(\delta_{trans} = 15,6 \text{ Hz}, \delta = 10,9 \text{ Hz}, 1 \text{ H, =CH} \)), \((Z)-6ca \): \(\delta = 1,12 \text{ (t, 3 H, CH₃)} \), 4,12 (q, 2 H, OCH₂), 5,20 (dd, \(\delta_{cis} = 11,9 \text{ Hz}, \delta = 1,9 \text{ Hz}, 1 \text{ H, =CH₂} \)), 5,30 (dd, \(\delta_{trans} = 16,9 \text{ Hz}, \delta = 1,9 \text{ Hz}, 1 \text{ H, =CH₂} \)), 6,35 (m, 1 H, =CH), 6,78 (d, \(\delta_{cis} = 11,8 \text{ Hz}, 1 \text{ H, =CH} \)), 7,56 (m, 1 H, =CH). – 13C-NMR (CDCl₃): \((E)-6ca \): \(\delta = 13,5 \text{ (CH₃)} \), 61,9 (OCH₂), 119,8 (=CH), 121,8 (=CH₂), 135,6 (C-5), 135,9 (=CH), 138,5 (=CH), 158,7/160,3 (CO/C=4); \((Z)-6ca \): \(\delta = 13,5 \text{ (CH₃)} \), 62,0 (OCH₂), 115,3 (=CH), 122,9 (=CH), 134,3 (=CH), 136,7 (=CH), 137,8 (C-5), 158,6/160,0 (CO/C=4). – MS (EI, 70 eV): m/z = 210 (M⁺, 36%), 182 (10), 110 (27), 109 (100), 108 (25).
C₈H₁₀N₂O₂S (210,3)
Ber. C 51,41 H 4,79 N 13,32%,
Gef. C 51,56 H 4,84 N 13,30%.

4-Ethenyl-1,2,3-thiadiazol-5-carbonsäureethylester (6cd)

Ausb. 50,3 g (91%), farbloses Öl. – IR (rein): \(\tilde{\nu} = 2980 \text{ cm}^{-1}, 2930, 1710, 1490, 1440, 1395, 1380, 1365, 1335, 1230, 1290, 1260, 1210, 1090, 1035, 1015, 990, 940, 840, 780, - \) \(1^H\)-NMR (CDCl₃): \(\delta = 1,29, (3H, CH₃), 4,30, (q, 2H, OCH₂), 5,75, (dd, \(\delta_{cis} = 11,1 \text{ Hz}, \delta = 1,6 \text{ Hz}, 1H, =CH₂), 6,63, (dd, \(\delta_{trans} = 17,5 \text{ Hz}, \delta = 1,6 \text{ Hz}, 1H, =CH₂), 7,34, (dd, \(\delta_{trans} = 17,5 \text{ Hz}, \delta_{cis} = 11,1 \text{ Hz}, 1H, =CH), - \) \(13^C\)-NMR (CDCl₃): \(\delta = 13,9, \) (CH₃), 62,4 (OCH₂), 124,1 (=CH₂), 125,0 (=CH), 137,4 (C-5), 159,2/160,5 (CO/C-4). – MS (EI, 70 eV): \(m/z = 184, M^+, 7\%), 156 (15), 139 (10), 112 (36), 100 (49), 97 (19), 85 (14), 84 (100), 83 (57), 82 (59), 81 (25).\)

C₇H₆N₂O₂S (184,2)
Ber. C 45,64 H 4,38 N 15,21%.
Gef. C 45,79 H 4,47 N 15,12%.

Allgemeine Vorschrift für die Hydrolyse der Ester 6ca, 6cd

0,1 mol Ester 6ca bzw. 6cd werden mit 4,8 g (0,12 mol) Natriumhydroxid in 100 ml Wasser ver- setzt und bei RT so lange gerührt, bis eine voll- ständige Lösung eintritt. Nach Extraktion mit Diethylether wird die wäßrige Phase mit verd. (0,12 mol) Natriumhydroxid in 100 ml Wasser ver- setzt und bei RT so lange gerührt, bis eine voll- ständige Lösung eintritt. Nach Extraktion mit Diethylether wird die wäßrige Phase mit verd. Salzsäure angesäuert und mehrfach mit Ether extrahiert. Die vereinigten Etherphasen werden mit MgSO₄ getrocknet und das Lösungsmittel im Rotationsverdampfer entfernt. Der Rückstand enthält die analysenreine Carbonsäure 7ca bzw. 7cd.

(Z/E)-4-(1,3-Butadien-1-yl)-1,2,3-thiadiazol-5-carbonsäure (7ca)

Ausb. 90%, Schmp. 150–152 °C (Zers.), \(\nu = 2920 \text{ cm}^{-1}, 2610, 2560, 1725, 1495, 1415, 1300, 1230, 1200, 1100, 1045, 1010, 995, 960, 880, 850, 790, 750, 675, - \) \(1^H\)-NMR (DMSO-d₆): \(\delta = 5,78, (dd, \delta_{cis} = 11,1 \text{ Hz}, \delta_{trans} = 1,2 \text{ Hz}, 1H, =CH₂), 6,52, (dd, \delta_{trans} = 17,6 \text{ Hz}, \delta_{cis} = 1,2 \text{ Hz}, 1H, =CH₂), 7,33, (dd, \delta_{cis} = 11,1 \text{ Hz}, \delta_{trans} = 17,6 \text{ Hz}, 1H, =CH), 13,4 (s, breit, 1H, COOH). - \) \(13^C\)-NMR (DMSO-d₆): \(\delta = 123,5, \) (-CH₂), 124,5 (-CH), 140,2 (C-5), 159,6/160,4 (CO/C-4). – MS (EI, 70 eV): \(m/z = 156, M^+, 14\%), 128 (76), 100 (42), 84 (15), 83 (50), 82 (45), 81 (28), 72 (29), 71 (45), 69 (53), 58 (100).

C₇H₆N₂O₂S (186,2)
Ber. C 46,14 H 3,32 N 15,37%.
Gef. C 46,10 H 3,27 N 15,29%.

4-Ethenyl-1,2,3-thiadiazol-5-carbonsäure (7cd)

Ausb. 70%, farblose Kristalle, Schmp. 160–162 °C (Zers.). – IR (KBr): \(\tilde{\nu} = 2920 \text{ cm}^{-1}, 2610, 2560, 1725, 1495, 1415, 1300, 1230, 1200, 1100, 1045, 1010, 995, 960, 880, 850, 790, 750, 675, - \) \(1^H\)-NMR (DMSO-d₆): \(\delta = 5,78, (dd, \delta_{cis} = 11,1 \text{ Hz}, \delta_{trans} = 1,2 \text{ Hz}, 1H, =CH₂), 6,52, (dd, \delta_{trans} = 17,6 \text{ Hz}, \delta_{cis} = 1,2 \text{ Hz}, 1H, =CH₂), 7,33, (dd, \delta_{cis} = 11,1 \text{ Hz}, \delta_{trans} = 17,6 \text{ Hz}, 1H, =CH), 13,4 (s, breit, 1H, COOH). - \) \(13^C\)-NMR (DMSO-d₆): \(\delta = 123,5, \) (-CH₂), 124,5 (-CH), 140,2 (C-5), 159,6/160,4 (CO/C-4). – MS (EI, 70 eV): \(m/z = 156, M^+, 14\%), 128 (76), 100 (42), 84 (15), 83 (50), 82 (45), 81 (28), 72 (29), 71 (45), 69 (53), 58 (100).

C₇H₆N₂O₂S (186,2)
Ber. C 46,14 H 3,32 N 15,37%.
Gef. C 46,10 H 3,27 N 15,29%.

[14] Dabei handelt es sich um 4-(4-Methoxy-1-buten-1-yl)-1,2,3-thiadiazol, das überwiegend (Z)-konfiguriert ist.