Conversion of Lapachol to Rhinacanthin-A and other Cyclized Products

P. Singh*, R. T. Pardasani, A. Suri, and C. P. Pokharna
Department of Chemistry, University of Rajasthan, Jaipur – 302004, India
Z. Naturforsch. 47b, 1031 – 1033 (1992); received February 18, 1992
Lapachol, Rhinacanthin-A, Stenocarpoquinone-A, Stenocarpoquinone-B, Dehydro-β-lapachone

A facile synthesis of rhinacanthin-A is achieved by the side chain cyclization of lapachol with meta-chloroperbenzoic acid along with stenocarpoquinone-A, stenocarpoquinone-B and its isomer.

Rhinacanthin-A (6), a new naturally occurring 1,4-naphthoquinone, has recently been isolated [1] from the plant Rhinacanthus nasutus (Acanthaceae). Lapachol (1) is also a naturally occurring 1,4-naphthoquinone which has been isolated by many workers [2] as well as from our laboratories [3, 4]. In pursuing our interest in the synthesis of quinones [5], we now present a synthesis of rhinacanthin-A (6) by side chain cyclization of lapachol in addition to other naturally occurring quinones (4, 5, 7). When lapachol (1) was allowed to react with meta-chloroperbenzoic acid in methylene chloride at 0 °C for 30 min a pair of dihydrofuran-nonaphthoquinones (4) and (5) and a pair of dihydroxyronaphthoquinones (6) and (7) were obtained (Scheme 1). The reaction appears [6, 7] to proceed through the initial formation of tautomeric epoxides (2) and (3). Ring opening, followed by cyclization may then afford both five membered furanoquinones-stenocarpoquinone-B (4) and β-1-(hydroxyisopropenyl)-dehydrofurano-1,2-naphthoquinone (5) and six membered pyranooquinones-rhinacanthin-A (6) and stenocarpoquinone-A (7) (Scheme 2). Characterization of all these products was done on the basis of their spectral data as well as by comparison with a PMR of an

* Reprint requests to Dr. P. Singh.
Verlag der Zeitschrift für Naturforschung,
D-W-7400 Tübingen
0932-0776/92/0700–1031/$ 01.00/0
authentic sample. Thus, compounds 4 and 5 showed UV spectra consistent with α- and β-lapachone systems respectively [8]. The PMR spectrum of stenocarpoquinone-B (4) showed characteristic signal at δ 4.85 (t, J = 8 Hz) assignable to C-2 methine proton whereas corresponding signal in 1,2-naphthoquinone (5) also appeared at δ 4.85 (t, J = 8 Hz). Similarly for six membered quinones (6) and (7), 1,2- and 1,4-quinonoid systems were distinguished on the basis of their UV spectra. The PMR spectrum of the rhinacanthin-A (6) displayed characteristic C-3 methine proton signal at δ 3.87 (t, J = 5 Hz). It was further confirmed by comparison with PMR of an authentic sample. Its molecular formula C_{15}H_{14}O_{4} was established by taking high resolution of its parent ion peak at m/z 258.0892. The C-3 methine proton signal in stenocarpoquinone-A (7) appeared at δ 3.97 (t, J = 5 Hz).

When the reaction was carried out for a longer time (4 h) and at higher temperature (25 °C), dehydration led to the formation of dehydro-α-lapachone (8) and dehydro-β-lapachone (9) which were confirmed by comparison with authentic samples.

Experimental

All the melting points are uncorrected. The purity of compounds has been checked by thin layer chromatography. UV spectra (λ_{max} in nm) were recorded in ethanol on a UV(VIS)u-2000 Hitachi spectrophotometer whereas IR spectra (ν_{max} in cm^{-1}) were taken in KBr/Nujol on Perkin-Elmer 137E spectrophotometer. ¹H NMR spectra were recorded in CDCl_{3}, on a Jeol FX 90Q FT NMR and 400 MHz Bruker instruments using TMS as an internal reference (chemical shifts in δ, ppm). Mass spectra were recorded on a Hitachi model RMU 6E spectrometer at 70 eV.

Lapachol, a yellow crystalline compound, m.p. 139–140 °C, isolated from the plants *Tecomella undulata* [3] and *Haplophragma adenophyllum* [4] (Bignoniaceae), was used for these reactions; UV (λ_{max} EtOH): 251, 278, 333 nm; IR (Nujol): 3350, 1660, 1630, 1410 cm^{-1}; ¹H NMR (CDCl_{3}): δ 1.73 (s, CH_{3}), 1.82 (s, CH_{3}), 3.35 (d, J = 7.0 Hz, -CH_{2}-), 5.27 (t, J = 7.0 Hz, =CH), 7.81 (m, 2×ArH), 8.11 (m, 2×ArH) ppm.

Reaction of lapachol (1) with meta-chloroperbenzoic acid

To a solution of lapachol (1) (2.4 g, 10 mmol) in dry dichloromethane (30 ml) was added a solution of meta-chloroperbenzoic acid (5.1 g, 30 mmol) in dichloromethane (50 ml) at 0 °C. After 30 min workup was carried out by treating the reaction mixture with a saturated aqueous sodium hydroxide solution (100 ml) for 20 min. The organic layer was separated, washed successively with saturated aqueous sodium bicarbonate (2×25 ml), water (2×25 ml) and dried over anhydrous MgSO_{4}. The crude orange solid, 1.5 g (60%) was subjected to column chromatography over silica gel employing chloroform as solvent. The following compounds were obtained, which were further purified by preparative TLC.

Stenocarpoquinone-B (4)

It was obtained as yellow needles, crystallized from benzene, 0.21 g (9%); m.p. 160–161 ºC; UV (λ_{max} EtOH): 250, 284, 331, 372 nm; IR (KBr): 3450, 1670, 1630, 1585, 1560, 1520, 1125 cm^{-1}; ¹H NMR (CDCl_{3}, 400 MHz): δ 1.21 (s, CH_{3}), 1.34 (s, CH_{3}), 2.98 (d, J = 8 Hz, -CH_{2}), 4.85 (t, J = 8 Hz, =CH), 7.7 (m, 2×ArH) and 8.05 (m, 2×ArH) ppm.

β-(1-Hydroxyisopropenyl)-dehydrofurano-1,4-naphthoquinone (5)

It was separated as red needles, 0.26 g (11%); m.p. 132 ºC; UV (λ_{max} EtOH): 253, 280, 332, 430 nm; IR (KBr): 3460, 1690, 1630, 1590, 1560, 1520, 1125, 1115 cm^{-1}; ¹H NMR (CDCl_{3}, 90 MHz): δ 1.21 (s, CH_{3}), 1.34 (s, CH_{3}), 2.98 (d, J = 8 Hz, -CH_{2}), 4.85 (t, J = 8 Hz, =CH), 7.55 (m, 3×ArH) and 7.90 (m, 1×ArH) ppm; MS (m/z): 258 [M^+], 240 [M^+–H_{2}O], 230 [M^+–CO], 212 [2×H_{2}O]^{+}.

Rhinacanthin-A (6)

It was separated as orange solid, 0.1 g (4%); m.p. 186–187 ºC; UV (λ_{max} EtOH): 245, 251, 282, 330 nm; ¹H NMR (CDCl_{3}, 90 MHz): δ 1.38 (s, CH_{3}), 1.46 (s, CH_{3}), 2.67 (dd, J = 5, 18 Hz, =CH),
2.83 (dd, J = 5, 18 Hz, -CH-), 3.87 (t, J = 5 Hz, -CH-\text{-OH}), 7.60 (m, 2×ArH) and 8.00 (m, 2×ArH) ppm; MS (m/z): 258 [M+] (C_{15}H_{14}O_4) (100%), 243 [M-Me]+ (18%), 225 (29%), 159 (29%).

Stenocarpoquinone-A (7)

It was separated as red needles, crystallized from benzene, 0.6 g (25%); m.p. 170–171 °C; UV (\(\lambda_{\text{max}}\) EtOH): 250, 282, 331, 431 nm; IR (KBr): 3450, 1690, 1650, 1590, 1565 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 1.45 (s, CH\(_3\)), 1.50 (s, CH\(_3\)), 2.61 (dd, J = 5, 18 Hz, -CH-), 2.77 (dd, J = 5, 18 Hz, -CH-), 3.97 (t, J = 5 Hz, -CH-\text{-OH}), 7.5 and 7.65 (t, J = 7.5 Hz, each, 2×ArH), 7.84 and 8.05 (d, J = 7.5 Hz, each, 2×ArH) ppm; MS (m/z): 258 [M+] (C_{15}H_{14}O_4).

Dehydro-\(\alpha\)-lapachone (8)

It was isolated as orange needles, m.p. 143 °C; \(^1\)H NMR (CDCl\(_3\), 90 MHz): \(\delta\) 1.56 (s, 2×CH\(_3\)), 5.76 (d, J = 10.5 Hz, =CH), 6.87 (d, J = 10.5 Hz, =CH), 7.82 (m, 2×Ar-H) and 8.15 (m, 2×Ar-H) ppm.

Dehydro-\(\beta\)-lapachone (9)

It was separated as red mass; \(^1\)H NMR (CDCl\(_3\), 90 MHz): \(\delta\) 1.56 (s, CH\(_3\)), 1.60 (s, CH\(_3\)), 6.20 (d, J = 10.5 Hz, =CH), 7.07 (d, J = 10.5 Hz, =CH), 7.64 (m, 3×ArH), 7.86 (m, 1×ArH) ppm; IR (Nujol): 1690, 1637, 1621, 1587 cm\(^{-1}\).

One of us (CPP) thanks to the University of Rajasthan, Jaipur, for providing financial assistance. We thank to Dr. Tien (Taiwan) for providing PMR spectrum of rhinacanthin-A.
