Manganese(II) Amides: The Synthesis and X-Ray Crystal Structures of Mn[N(SiMe$_3$)$_2$]$_2$[THF] and Mn$_3$[N(H)2,6-Pr$_2$C$_6$H$_3$]$_4$[N(SiMe$_3$)$_2$]

Dietmar K. Kennepohl, Sally Brooker, George M. Sheldrick, and Herbert W. Roesky*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4,
W-3400 Göttingen, FRG

Z. Naturforsch. 47b, 9–16 (1992); received June 10, 1991

Manganese Complexes, X-Ray

A series of manganese(II) amides (1–4), derived from 2,6-diisopropylaniline (H$_2$NAr; where Ar = 2,6-Pr$_2$C$_6$H$_3$) and its N-silylated derivative H(SiMe$_3$)NAr, has been prepared and characterized. The crystal structure of Mn[N(SiMe$_3$)$_2$]$_2$[THF] (2) reveals a monomeric species with a planar three-coordinate Mn(II) center. Crystal data for 2: trigonal (hexagonal axes), $a = 30.119(2)$ Å, $c = 10.589(1)$ Å, $V = 8319(1)$ Å3, $T = 153$ K, space group P3, (No. 144), $Z = 9$ (R/R$_w$ = 0.053/0.050). In contrast, Mn$_3$[N(H)Ar]$_4$[N(SiMe$_3$)$_2$]$_2$C$_7$H$_8$ (4) is shown to be a novel trinuclear compound held together by nitrogen-bridges. The two terminal Mn(II) atoms have a distorted trigonal planar arrangement of nitrogen donors whereas the central Mn(II) is surrounded by a distorted tetrahedral array of nitrogen donors. Crystal data for 4: orthorhombic, $a = 21.301(5)$ Å, $b = 17.021(6)$ Å, $c = 20.519(7)$ Å, $V = 7439(4)$ Å3, $T = 153$ K, space group Pbcn (No. 60), $Z = 4$ (R/R$_w$ = 0.050/0.070).

Introduction

Despite growing interest in exploring the chemistry of various transition metal amide systems, the number of manganese amide complexes reported is quite meagre [1–3]. This may be due in part to the practical difficulties arising from working with compounds containing extremely reactive Mn–N bonds. Nevertheless, a limited number of amidomanganese compounds are known, including Me$_2$NMn(CO)$_5$ [4], Mn[N(CN)$_2$]$_2$ [5], Mn(N(SiMe$_3$)$_2$)$_2$[THF] [6], Mn[phthalimide]:4NH$_3$ [7], and more recently Mn[N(SiMe$_3$)$_2$]$_3$ [2] and Mn$_3$[NEt$_3$]$_6$Cl$_2$[Li(THF)$_2$]$_2$ [3]. X-ray structural analyses have been rare, with the exception of the amido species containing N(SiMe$_3$)$_2$ which have been studied in more depth. The structures of the monomers Mn[N(SiMe$_3$)$_2$]$_3$ [2] and Mn$_3$[N(SiMe$_3$)$_2$]$_2$[THF] [8] and the dimer [Mn(N(SiMe$_3$)$_2$)$_2$]$_2$ [9] are known. In each case the manganese atoms are three-coordinated. A series of yellow tetrahedral compounds Mn[N(SiMe$_3$)$_2$]$_2$(L), (where L = THF, py or Bu’CN) has also been prepared [10], and the structure of Mn$_3$[N(SiMe$_3$)$_2$]$_2$[THF]$_2$ was recently reported [11]. An example of a four-coordinate purely amidomanganese(II) center is found in the unusual molecular structure of Mn$_3$[NEt$_3$]$_6$Cl$_2$[Li(THF)$_2$]$_2$ which contains three tetrahedrally coordinated manganese atoms [3].

Herein we report the preparation and characterization of a series of manganese(II) amides (1–4), including the low temperature X-ray structure determinations of the mononuclear manganese compound Mn$_3$[N(SiMe$_3$)Ar]$_4$[THF] (2), where Ar = 2,6-Pr$_2$C$_6$H$_3$, and the trinuclear manganese compound Mn$_3$[N(H)Ar]$_4$[N(SiMe$_3$)$_2$]$_2$C$_7$H$_8$ (4). To our knowledge, the almost linear arrangement of three manganese(II) atoms bound exclusively by nitrogen donors makes 4 unique.

Experimental

General procedures

The reactants Mn[N(SiMe$_3$)$_2$]$_2$ [8] and HN(SiMe$_3$)Ar [12] were prepared according to published methods. H$_2$NAr was obtained from Janssen and purified by initial drying over KOH and subsequent distillation from CaH$_2$. Anhydrous MnCl$_2$ was obtained from Fluka, and Bu’Li (1.6 M in hexane) from Janssen. Both were used without further purification. All solvents were dried and distilled before use. Infrared spectra were recorded with a BIORAD FTS7 spectrometer using halo oil or nujol mulls and KBr plates. All manipulations were carried out either on a vacuum line or in a dry box under dry oxygen-free nitrogen. Owing to the extreme oxygen sensitivity of these manganese amides, all reactions were carried out in H-vessels, which consist of two compartments separated by a glass frit. Melting points

* Reprint requests to Prof. Dr. H. W. Roesky.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen
0932—0776/92/0100—0009/$01.00/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz.
were determined on samples sealed in melting point capillaries and are uncorrected.

Preparation of Mn[N(H)Ar]$_2$[THF] (1) and Mn[N(SiMe$_3$)Ar]$_2$[THF] (2)

A sample of (a) H$_2$NAr (1.64 g, 9.27 mmol) or (b) HN(SiMe$_3$)Ar (1.43 g, 5.74 mmol) was dissolved in THF and cooled to 0 °C in one compartment of an H-vessel. To this stirred solution an equivalent amount of ButLi was added by syringe. The solution was allowed to warm to room temperature and was stirred for a further hour. The H-vessel was tilted to allow the LiN(R)Ar (R = H, SiMe$_3$) solution to pass through the glass frit into the second compartment containing one half equivalent of MnCl$_2$ (a) 0.57 g, 4.5 mmol or (b) 0.35 g, 2.8 mmol. This mixture was stirred at room temperature for 3 h. The solvent was removed under vacuum to leave a white solid, which was extracted using hexane. The H-vessel was again tilted to allow the hexane solution to pass through the glass frit to the first compartment filtering out any solid (LiCl). Solvent was again removed in vacuum leaving a white solid yield: (a) 1.76 g, 81% of Mn[N(H)Ar][THF] (1), m.p. 178–181 °C.

(b) Yield 2.6 g, 72% of Mn[N(SiMe$_3$)Ar][THF] (2), m.p. 131–134 °C.

Preparation of Mn[N(H)Ar]$_3$(3) and Mn$_3$[N(H)Ar]$_4$N(SiMe$_3$)$_2$ (4)

A sample of Mn[N(SiMe$_3$)$_2$]$_2$ (a) 1.89 g, 5.04 mmol or (b) 1.61 g, 4.29 mmol) was weighed out into an H-vessel. The appropriate amount of H$_2$NAr (a) 1.80 g, 10.2 mmol or (b) 0.76 g, 4.3 mmol) was added by syringe. The mixture was stirred and warmed to 90 °C for 10 min. After cooling to room temperature the volatile product, HN(SiMe$_3$)$_2$ was removed under vacuum. The remaining solid was recrystallized from toluene to afford: (a) colorless crystals (yield 1.4 g, 68%, m.p. 130–132 °C) of 3.

(b) large ruby-red crystals (yield 1.3 g, 76%, m.p. 169–172 °C) of 4.

C$_{67}$H$_{130}$Mn$_4$N$_8$Si$_4$
Calcd C 62.73 H 9.11 N 6.55,
Found C 62.4 H 9.1 N 6.6

X-ray crystallography

Using an inert mounting oil we were able to rapidly isolate and mount suitable single crystals [13]. These were transferred immediately to the low temperature gas stream of the diffractometer in which the crystals were stable. Data for both crystals were collected at -120 °C on a Siemens-Stöe AED four circle diffractometer using graphite monochromated Mo-K$_\alpha$ radiation. 20-ω scans, with online profile fitting [14] and variable scan speeds, were employed. Empirical absorption corrections based on ψ-scan data were applied in each case. Both structures were solved by Direct Methods (SHELXS-86) [15] and refined by full-matrix least squares techniques (SHELX-76, modified by the author).

Crystal data for Mn[N(SiMe$_3$)$_2$][2,6-Pr$_2$C$_6$H$_3$] [THF] (2)

C$_{34}$H$_{60}$N$_2$O$_2$Si$_2$Mn, Mr = 624.0, colorless, crystal dimensions 0.3×0.4×0.6 mm, trigonal (hexagonal axes) a = b = 30.119(2) Å, c = 10.589(1) Å, V = 8319(1) Å3, space group P3$_1$, Z = 9, F(000) = 3051, 7812 reflections collected (8 < 2θ < 45°), 7806 unique and 6578 observed reflections with F > 3.0σ(F). The manganese, silicon, oxygen, nitrogen, and THF and methyl carbon atoms (with the exception of C$_{328}$, C$_{329}$ and C$_{330}$) were refined anisotropically. Hydrogen atoms were inserted at calculated positions (The hydrogen atoms

Crystal data for Mn[N(SiMe$_3$)Ar]$_2$[2,6-Pr$_2$C$_6$H$_3$] [THF] (4)

C$_{60}$H$_{108}$Mn$_4$N$_8$Si$_4$C$_6$H$_{38}$, Mr = 1282.8, red, crystal dimensions 0.6×0.6×0.7 mm, orthorhombic, a = 21.301(5) Å, b = 17.021(6) Å, c = 20.519(7) Å, V = 7812(4) Å3, space group Pbcn, Z = 4, F(000) = 2764, 6436 reflections collected (8 < 2θ < 45°), 4832 unique and 3964 observed reflections with F > 4.0σ(F). All non-hydrogen atoms were refined anisotropically and hydrogen atoms were inserted at calculated positions.
Results and Discussion

These Mn–N compounds (1–4) are thermally stable solids which are not only sensitive to moisture but also to oxygen. An almost instantaneous color change to black is observed in the presence of O₂.

Compounds 1 and 2 are prepared by transmetalation reactions; combining anhydrous MnCl₂ with two equivalents of the corresponding lithiated aniline derivative affords the colorless solids (Scheme I).

\[
\text{MnCl}_2 \cdot 2 \text{LiN-SiMe}_3 + 2 \text{HN(SiMe}_3)_2 \rightarrow \text{Mn}[\text{HN(SiMe}_3)_2]_2 + 2 \text{LiCl} + \text{THF}
\]

The remarkable and novel trinuclear manganese(II) compound (4) was prepared by a different synthetic route. The reaction of Mn[N(SiMe_3)_2]_2 with H₂NAr afforded an entirely nitrogen-bridged linear trinuclear manganese complex in 76% yield (Scheme II). Unlike the other Mn–N compounds (1–3) this compound is ruby-red in color. 3 can also be prepared from these reagents by simply altering the reaction stoichiometry (Scheme II).

\[
\begin{align*}
\text{Mn} & \quad \text{[N(SiMe}_3)_2]_2 + 2 \text{H}_2\text{NAr} \rightarrow \text{Mn} \quad [\text{HNAr}]_2 \\
\text{Mn} & \quad [\text{HNAr}]_2 + 2 \text{HN(SiMe}_3)_2 \rightarrow \text{Mn}[\text{HN(SiMe}_3)_2]_2 + 2 \text{H}_2\text{NAr}
\end{align*}
\]

Crystals of Mn[N(SiMe_3)Ar]_2[THF] (2) and Mn_3[N(H)Ar]_4[N(SiMe)_2]_2·C₆H₆ (4) were obtained from hexane and toluene solutions, respectively, and their X-ray crystal structures were determined. Atomic coordinates are listed in Tables I and II and selected interatomic distances and angles are given in Tables III and IV.

Table I. Atomic coordinates (×10⁴) and equivalent isotropic displacement coefficients (Å²×10⁴) for Mn[N(SiMe)_2]_2[Ar]_2[THF] (2).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(1)</td>
<td>2069(1)</td>
<td>4368(1)</td>
<td>9791</td>
<td>24(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2634(2)</td>
<td>4708(2)</td>
<td>11035(6)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2951(3)</td>
<td>5242(5)</td>
<td>10888(7)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2918(3)</td>
<td>5600(5)</td>
<td>11715(7)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3219(3)</td>
<td>6127(3)</td>
<td>11463(7)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3538(3)</td>
<td>6314(5)</td>
<td>10442(7)</td>
<td>29(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>3564(3)</td>
<td>5968(5)</td>
<td>9631(7)</td>
<td>27(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>3287(3)</td>
<td>5442(5)</td>
<td>9823(7)</td>
<td>22(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2555(3)</td>
<td>5149(5)</td>
<td>12862(7)</td>
<td>31(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2091(3)</td>
<td>5479(5)</td>
<td>12604(8)</td>
<td>46(5)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2843(3)</td>
<td>5714(5)</td>
<td>14050(8)</td>
<td>47(5)</td>
</tr>
<tr>
<td>C(10)</td>
<td>3349(3)</td>
<td>5095(5)</td>
<td>8881(7)</td>
<td>30(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3909(3)</td>
<td>5249(5)</td>
<td>8658(9)</td>
<td>49(5)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3092(3)</td>
<td>5074(5)</td>
<td>7629(8)</td>
<td>50(5)</td>
</tr>
<tr>
<td>Si(1)</td>
<td>2831(3)</td>
<td>4380(1)</td>
<td>12038(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3455(3)</td>
<td>4434(3)</td>
<td>11528(9)</td>
<td>47(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2942(4)</td>
<td>4595(3)</td>
<td>13744(8)</td>
<td>54(5)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2311(3)</td>
<td>3695(3)</td>
<td>12057(8)</td>
<td>39(4)</td>
</tr>
<tr>
<td>N(2)</td>
<td>1692(2)</td>
<td>3752(5)</td>
<td>8708(5)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>1180(3)</td>
<td>3621(5)</td>
<td>8364(7)</td>
<td>21(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>1082(3)</td>
<td>3749(3)</td>
<td>7139(7)</td>
<td>26(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>584(3)</td>
<td>3628(3)</td>
<td>6848(8)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>183(3)</td>
<td>3399(3)</td>
<td>7707(8)</td>
<td>42(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>285(3)</td>
<td>3275(4)</td>
<td>8934(8)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>775(3)</td>
<td>3377(3)</td>
<td>9230(7)</td>
<td>26(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>1503(3)</td>
<td>4025(3)</td>
<td>6182(7)</td>
<td>33(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>1682(3)</td>
<td>4602(3)</td>
<td>6164(8)</td>
<td>46(5)</td>
</tr>
<tr>
<td>C(24)</td>
<td>1345(4)</td>
<td>3800(4)</td>
<td>4836(8)</td>
<td>57(5)</td>
</tr>
<tr>
<td>C(25)</td>
<td>863(3)</td>
<td>3246(3)</td>
<td>10547(7)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>454(4)</td>
<td>2711(4)</td>
<td>10984(10)</td>
<td>69(6)</td>
</tr>
<tr>
<td>C(27)</td>
<td>911(4)</td>
<td>3648(4)</td>
<td>11495(8)</td>
<td>67(6)</td>
</tr>
<tr>
<td>Si(2)</td>
<td>1874(3)</td>
<td>3308(1)</td>
<td>8333(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>2577(3)</td>
<td>3618(3)</td>
<td>8486(9)</td>
<td>45(4)</td>
</tr>
<tr>
<td>C(29)</td>
<td>1577(5)</td>
<td>2712(5)</td>
<td>9369(9)</td>
<td>51(5)</td>
</tr>
<tr>
<td>C(30)</td>
<td>1679(5)</td>
<td>3040(3)</td>
<td>6704(8)</td>
<td>48(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1771(2)</td>
<td>4889(2)</td>
<td>9443(5)</td>
<td>32(2)</td>
</tr>
<tr>
<td>C(31)</td>
<td>2079(3)</td>
<td>5429(3)</td>
<td>9119(8)</td>
<td>33(4)</td>
</tr>
<tr>
<td>C(32)</td>
<td>1714(3)</td>
<td>5645(3)</td>
<td>9164(8)</td>
<td>32(4)</td>
</tr>
<tr>
<td>C(33)</td>
<td>1212(3)</td>
<td>5787(3)</td>
<td>8756(8)</td>
<td>41(4)</td>
</tr>
<tr>
<td>C(34)</td>
<td>1224(3)</td>
<td>4737(3)</td>
<td>9387(9)</td>
<td>39(4)</td>
</tr>
<tr>
<td>Mn(2)</td>
<td>2248(1)</td>
<td>1411(1)</td>
<td>12759(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>2815(2)</td>
<td>1802(2)</td>
<td>13975(5)</td>
<td>24(3)</td>
</tr>
<tr>
<td>C(201)</td>
<td>2883(3)</td>
<td>2297(3)</td>
<td>14259(7)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(202)</td>
<td>3124(3)</td>
<td>2700(3)</td>
<td>13377(7)</td>
<td>29(2)</td>
</tr>
<tr>
<td>C(203)</td>
<td>3149(3)</td>
<td>3175(3)</td>
<td>13654(8)</td>
<td>40(2)</td>
</tr>
<tr>
<td>C(204)</td>
<td>2948(3)</td>
<td>3240(3)</td>
<td>14727(8)</td>
<td>42(2)</td>
</tr>
<tr>
<td>C(205)</td>
<td>2729(3)</td>
<td>2858(3)</td>
<td>15604(8)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(206)</td>
<td>2688(3)</td>
<td>2380(3)</td>
<td>15390(7)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(207)</td>
<td>3331(3)</td>
<td>2650(3)</td>
<td>12146(8)</td>
<td>44(2)</td>
</tr>
<tr>
<td>C(208)</td>
<td>3889(4)</td>
<td>3085(4)</td>
<td>11891(10)</td>
<td>71(5)</td>
</tr>
<tr>
<td>C(209)</td>
<td>2986(4)</td>
<td>2608(4)</td>
<td>11044(8)</td>
<td>69(6)</td>
</tr>
<tr>
<td>C(210)</td>
<td>2411(3)</td>
<td>1958(3)</td>
<td>16386(8)</td>
<td>40(2)</td>
</tr>
<tr>
<td>C(211)</td>
<td>2593(4)</td>
<td>2152(4)</td>
<td>17758(8)</td>
<td>62(6)</td>
</tr>
<tr>
<td>C(212)</td>
<td>1843(3)</td>
<td>1739(3)</td>
<td>16280(9)</td>
<td>51(5)</td>
</tr>
</tbody>
</table>
Table I (continued).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U<sub>eq</sub>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(3)</td>
<td>3278(1)</td>
<td>1670(1)</td>
<td>14511(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(213)</td>
<td>3926(3)</td>
<td>2099(4)</td>
<td>13820(9)</td>
<td>68(6)</td>
</tr>
<tr>
<td>C(214)</td>
<td>3083(4)</td>
<td>1005(4)</td>
<td>14166(12)</td>
<td>85(7)</td>
</tr>
<tr>
<td>C(215)</td>
<td>3398(4)</td>
<td>1755(4)</td>
<td>16254(9)</td>
<td>64(6)</td>
</tr>
<tr>
<td>N(4)</td>
<td>1980(2)</td>
<td>857(2)</td>
<td>11447(6)</td>
<td>28(3)</td>
</tr>
<tr>
<td>C(216)</td>
<td>1446(3)</td>
<td>493(4)</td>
<td>11625(7)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(217)</td>
<td>1285(3)</td>
<td>174(3)</td>
<td>12702(7)</td>
<td>31(2)</td>
</tr>
<tr>
<td>C(218)</td>
<td>761(3)</td>
<td>-158(3)</td>
<td>12907(8)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C(219)</td>
<td>399(3)</td>
<td>-187(3)</td>
<td>12075(8)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C(220)</td>
<td>550(3)</td>
<td>114(3)</td>
<td>10909(9)</td>
<td>35(2)</td>
</tr>
<tr>
<td>C(221)</td>
<td>107(1)</td>
<td>457(3)</td>
<td>10760(7)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(222)</td>
<td>1660(3)</td>
<td>179(3)</td>
<td>13672(8)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C(223)</td>
<td>1602(4)</td>
<td>-345(3)</td>
<td>13899(10)</td>
<td>61(5)</td>
</tr>
<tr>
<td>C(224)</td>
<td>1612(4)</td>
<td>415(3)</td>
<td>14945(8)</td>
<td>59(5)</td>
</tr>
<tr>
<td>C(225)</td>
<td>1205(3)</td>
<td>785(3)</td>
<td>9575(7)</td>
<td>35(2)</td>
</tr>
<tr>
<td>C(226)</td>
<td>954(3)</td>
<td>468(3)</td>
<td>8398(7)</td>
<td>48(4)</td>
</tr>
<tr>
<td>C(227)</td>
<td>1064(3)</td>
<td>1204(3)</td>
<td>9731(8)</td>
<td>48(5)</td>
</tr>
<tr>
<td>Si(4)</td>
<td>2375(3)</td>
<td>746(1)</td>
<td>10507(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(228)</td>
<td>3027(3)</td>
<td>1338(4)</td>
<td>10553(10)</td>
<td>67(5)</td>
</tr>
<tr>
<td>C(229)</td>
<td>2407(4)</td>
<td>1664(6)</td>
<td>10990(9)</td>
<td>60(6)</td>
</tr>
<tr>
<td>C(230)</td>
<td>2202(4)</td>
<td>633(4)</td>
<td>8783(8)</td>
<td>57(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1676(2)</td>
<td>1661(2)</td>
<td>12985(9)</td>
<td>32(3)</td>
</tr>
<tr>
<td>C(231)</td>
<td>1788(3)</td>
<td>2190(3)</td>
<td>12852(9)</td>
<td>41(4)</td>
</tr>
<tr>
<td>C(232)</td>
<td>1316(3)</td>
<td>2137(3)</td>
<td>13369(11)</td>
<td>65(6)</td>
</tr>
<tr>
<td>C(233)</td>
<td>898(3)</td>
<td>1660(3)</td>
<td>13090(12)</td>
<td>66(5)</td>
</tr>
<tr>
<td>C(234)</td>
<td>1133(3)</td>
<td>1332(3)</td>
<td>13204(8)</td>
<td>37(4)</td>
</tr>
<tr>
<td>Mn(3)</td>
<td>5742(1)</td>
<td>4674(1)</td>
<td>6047(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>6299(2)</td>
<td>4853(2)</td>
<td>4791(6)</td>
<td>27(3)</td>
</tr>
<tr>
<td>C(301)</td>
<td>6551(3)</td>
<td>4560(3)</td>
<td>4932(7)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(302)</td>
<td>6457(3)</td>
<td>4162(3)</td>
<td>4035(7)</td>
<td>28(2)</td>
</tr>
<tr>
<td>C(303)</td>
<td>6669(3)</td>
<td>3853(3)</td>
<td>4242(8)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C(304)</td>
<td>6970(3)</td>
<td>3913(3)</td>
<td>5301(8)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(305)</td>
<td>7066(3)</td>
<td>4292(3)</td>
<td>6127(8)</td>
<td>39(2)</td>
</tr>
<tr>
<td>C(306)</td>
<td>6865(3)</td>
<td>4619(3)</td>
<td>5974(7)</td>
<td>27(2)</td>
</tr>
<tr>
<td>C(307)</td>
<td>6126(3)</td>
<td>4067(3)</td>
<td>2853(8)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(308)</td>
<td>6401(4)</td>
<td>4039(4)</td>
<td>16658(8)</td>
<td>58(2)</td>
</tr>
<tr>
<td>C(309)</td>
<td>5608(3)</td>
<td>3577(3)</td>
<td>3012(9)</td>
<td>59(5)</td>
</tr>
<tr>
<td>C(310)</td>
<td>6996(3)</td>
<td>5038(3)</td>
<td>6940(8)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(311)</td>
<td>7572(3)</td>
<td>5389(4)</td>
<td>7071(11)</td>
<td>70(5)</td>
</tr>
<tr>
<td>C(312)</td>
<td>6745(4)</td>
<td>4800(4)</td>
<td>8240(9)</td>
<td>80(7)</td>
</tr>
<tr>
<td>Si(5)</td>
<td>6539(1)</td>
<td>5403(3)</td>
<td>3902(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(313)</td>
<td>7065(4)</td>
<td>5984(3)</td>
<td>4708(10)</td>
<td>76(6)</td>
</tr>
<tr>
<td>C(314)</td>
<td>6827(4)</td>
<td>5371(3)</td>
<td>2371(9)</td>
<td>72(6)</td>
</tr>
<tr>
<td>C(315)</td>
<td>5998(3)</td>
<td>5524(4)</td>
<td>3584(10)</td>
<td>63(5)</td>
</tr>
<tr>
<td>N(6)</td>
<td>5438(2)</td>
<td>4972(2)</td>
<td>7205(6)</td>
<td>29(3)</td>
</tr>
<tr>
<td>C(316)</td>
<td>4893(3)</td>
<td>4611(3)</td>
<td>7477(7)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(317)</td>
<td>4761(3)</td>
<td>4329(3)</td>
<td>8612(8)</td>
<td>37(2)</td>
</tr>
<tr>
<td>C(318)</td>
<td>4257(3)</td>
<td>3954(3)</td>
<td>8803(9)</td>
<td>46(2)</td>
</tr>
<tr>
<td>C(319)</td>
<td>3893(3)</td>
<td>3862(3)</td>
<td>7915(8)</td>
<td>46(2)</td>
</tr>
<tr>
<td>C(320)</td>
<td>4016(3)</td>
<td>4139(3)</td>
<td>6840(8)</td>
<td>42(2)</td>
</tr>
<tr>
<td>C(321)</td>
<td>4523(3)</td>
<td>4524(4)</td>
<td>6587(6)</td>
<td>31(2)</td>
</tr>
<tr>
<td>Si(6)</td>
<td>5698(1)</td>
<td>5387(1)</td>
<td>7749(3)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(322)</td>
<td>6374(5)</td>
<td>5842(6)</td>
<td>8157(15)</td>
<td>129(5)</td>
</tr>
<tr>
<td>C(323)</td>
<td>5716(8)</td>
<td>6047(9)</td>
<td>6617(18)</td>
<td>197(9)</td>
</tr>
<tr>
<td>C(330)</td>
<td>5368(4)</td>
<td>5650(4)</td>
<td>9158(9)</td>
<td>71(3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>5332(2)</td>
<td>3849(2)</td>
<td>6197(5)</td>
<td>35(3)</td>
</tr>
</tbody>
</table>

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{eq} tensor.

Table II. Atomic coordinates (× 10⁴) and equivalent isotropic displacement coefficients (Å²×10⁴) for Mn₃[N(H)Ar]₃[N(SiMe₃)₂]>C₆H₈(4).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U<sub>eq</sub>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(311)</td>
<td>5562(3)</td>
<td>3530(3)</td>
<td>6504(9)</td>
<td>38(4)</td>
</tr>
<tr>
<td>C(312)</td>
<td>5119(3)</td>
<td>2978(3)</td>
<td>6446(10)</td>
<td>56(5)</td>
</tr>
<tr>
<td>C(333)</td>
<td>4662(3)</td>
<td>3025(3)</td>
<td>6753(12)</td>
<td>70(5)</td>
</tr>
<tr>
<td>C(334)</td>
<td>3475(3)</td>
<td>3519(3)</td>
<td>6098(10)</td>
<td>50(4)</td>
</tr>
</tbody>
</table>

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{eq} tensor.
Table III. Selected bond lengths (Å) and angles (°) for Mn[N(SiMe₃)Ar][THF] (2).

<table>
<thead>
<tr>
<th>Bond Lengths</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(1) - N(1)</td>
<td>1.998(6)</td>
</tr>
<tr>
<td>Mn(1) - O(1)</td>
<td>2.194(7)</td>
</tr>
<tr>
<td>Mn(1) - N(30)</td>
<td>2.123(3)</td>
</tr>
<tr>
<td>Mn(1) - N(30a)</td>
<td>2.157(3)</td>
</tr>
<tr>
<td>Mn(1) - Si(1)</td>
<td>1.717(4)</td>
</tr>
<tr>
<td>Mn(1) - C(30)</td>
<td>1.439(5)</td>
</tr>
<tr>
<td>Mn(2) - N(1)</td>
<td>3.023(1)</td>
</tr>
<tr>
<td>Mn(2) - N(50)</td>
<td>2.135(3)</td>
</tr>
<tr>
<td>Mn(2) - N(50a)</td>
<td>2.135(3)</td>
</tr>
<tr>
<td>Si(1) - N(1)</td>
<td>1.717(4)</td>
</tr>
<tr>
<td>Si(1) - C(30)</td>
<td>1.439(5)</td>
</tr>
<tr>
<td>N(1) - Mn(1) - N(30)</td>
<td>138.6(1)</td>
</tr>
<tr>
<td>N(1) - Mn(1) - N(50)</td>
<td>90.4(1)</td>
</tr>
<tr>
<td>N(1) - Mn(1) - N(30a)</td>
<td>118.9(2)</td>
</tr>
<tr>
<td>N(1) - Mn(2) - N(50a)</td>
<td>127.9(1)</td>
</tr>
<tr>
<td>N(1) - Mn(2) - N(50a)</td>
<td>89.6(1)</td>
</tr>
<tr>
<td>N(1) - Mn(1) - Si(2)</td>
<td>117.5(2)</td>
</tr>
<tr>
<td>N(1) - Mn(1) - C(30)</td>
<td>133.6(2)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.980(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>2.141(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>2.135(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.716(4)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.444(4)</td>
</tr>
</tbody>
</table>

Table IV. Selected interatomic distances (Å) and angles (°) for Mn₃[N(H)Ar]₄[N(SiMe₃)₂]·C₂H₆ (4).

<table>
<thead>
<tr>
<th>Bond Lengths</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.980(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>2.141(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>2.135(3)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.716(4)</td>
</tr>
<tr>
<td>Mn(1) - Mn(2) - Mn(2)</td>
<td>1.444(4)</td>
</tr>
</tbody>
</table>

In 2 there are three similar, but independent Mn[N(SiMe₃)Ar][THF] monomers in the asymmetric unit. One of these is shown in Fig. 1. Each manganese(II) atom binds two amide ligands and one THF molecule, resulting in a distorted trigonal planar geometry. The maximum displacement of a manganese atom from its N₃O plane is 0.021 Å, for Mn(1). The average N – Mn – N angle is 143.8 ± 0.5°, whereas the N – Mn – O angles range from 106.3 to 110.3(3)°. This simply reflects the greater steric requirements of the N(SiMe₃)(Ar) groups. Similar compression of the N – Mn – O angle relative to the N – Mn – N angle is also observed in related THF adducts (Table V). Both the average Mn – N (terminal) and the Mn – O distances of 1.993 ± 0.011 Å and 2.185 ± 0.018 Å in 2 are similar to those found in related structures (Table V). The geometry about the nitrogen atoms is also approximately planar (N is at most 0.113 Å above its MnCSi plane) suggesting that π-delocalization with Si and the metal center is possible. The MnCSi planes are twisted by 52 ± 3° relative to each other allowing the bulky aromatic groups to be well separated in space.
The structure of Mn[N(H)Ar]_2[THF] (1) is expected to be very similar to that of 2 and Mn[N(SiMe_3)_2]_2[THF] [8]. In addition, with the absence of THF as a coordinating solvent, Mn[N(H)Ar]_2 (3) is expected to be a polynuclear manganese species which may possess a geometry similar to 4 or to [Mn[N(SiMe_3)_2]_2][6].

The X-ray structural analysis of Mn_3[N(H)Ar]_4[N(SiMe_3)_2]_2·C_6H_6 (4) (Fig. 2) reveals an almost linear (170.3(1)°) array of three manganese(II) atoms bridged by four nitrogen (NHAr) atoms and capped at both ends by a terminal nitrogen (N(SiMe_3)_2). The four-membered Mn–N rings have internal angles of 90.4(1)° at Mn(1) and 89.6(1)° at Mn(2). The planes (maximum displacement from least squares plane is 0.031 Å) formed by these rings are twisted by 75.7° to each other resulting in a distorted tetrahedral arrangement of nitrogen atoms around Mn(2) and a distorted trigonal planar (maximum displacement of Mn(1) from the N_3 plane is 0.028 Å) arrangement of nitrogen atoms around Mn(1) and Mn(1a). As in 2 the geometry about the terminal nitrogens is planar (N is at most 0.033 Å above its MnSi_2 plane), however the bridging nitrogens (N_30, N_50) do not have a planar environment which suggests that H atoms are attached to them. The hydrogen atoms on the bridging nitrogens

![Perspective view of one of the three similar but independent Mn[N(SiMe_3)Ar]_2[THF] molecules in the asymmetric unit of 2. The hydrogen atoms have been omitted for clarity.](image)

Table V. Bond lengths (Å) and angles (°) for related manganese(II) compounds (at room temperature except where noted).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mn–N_d</th>
<th>Mn–N_e</th>
<th>Mn–O_THF</th>
<th>N_i–Mn–N_i</th>
<th>N–Mn–O</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn[N(SiMe_3)(2,6-Pr,C_6H_5)]_2[THF]^2</td>
<td>1.985–2.004(6)</td>
<td>–</td>
<td>2.158–2.203(7)</td>
<td>143.4–144.3(3)</td>
<td>106.3–110.3(3)</td>
<td>this work</td>
</tr>
<tr>
<td>Mn[N(SiMe_3)]_2[THF]^2</td>
<td>1.99(2)</td>
<td>–</td>
<td>2.16(2)</td>
<td>145–150</td>
<td>101–113</td>
<td>[8]</td>
</tr>
<tr>
<td>Mn[N(SiMe_3)_2][THF]</td>
<td>2.033–2.048(5)</td>
<td>–</td>
<td>2.226–2.249(5)</td>
<td>131.7(2)</td>
<td>98.4–117.3(2)</td>
<td>[11]</td>
</tr>
<tr>
<td>Mn(C(H)(SiMe_3)]_2[THF]</td>
<td>–</td>
<td>2.19(2)</td>
<td>160.1(9)</td>
<td>100.0(6)</td>
<td>–</td>
<td>[24]</td>
</tr>
<tr>
<td>Mn[N(SiMe_3)_2]Li[THF]</td>
<td>2.03(3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mn[N(SiMe_3)]_2Li</td>
<td>1.994</td>
<td>2.184</td>
<td>–</td>
<td>–</td>
<td>98.9^b</td>
<td>–</td>
</tr>
<tr>
<td>Mn[N(SiMe_3)_2]Li</td>
<td>1.997–1.999(3)</td>
<td>2.170–2.174(3)</td>
<td>–</td>
<td>99.2(1)^b</td>
<td>–</td>
<td>[9b]</td>
</tr>
<tr>
<td>Mn,Ni[N(H)2,6-Pr,C_6H_5,N(SiMe_3)_2]_2(4)</td>
<td>1.980(3)</td>
<td>2.123–2.157(3)</td>
<td>–</td>
<td>89.6–90.4(1)^b</td>
<td>–</td>
<td>this work</td>
</tr>
<tr>
<td>Mn,Ni[N(H)2,6-Pr,C_6H_5,N(SiMe_3)_2]_2(4)</td>
<td>–</td>
<td>2.089–2.203(5)</td>
<td>–</td>
<td>91.5–94.7(2)^b</td>
<td>–</td>
<td>[3]</td>
</tr>
<tr>
<td>Mn,Ni[mesityl]_2</td>
<td>–</td>
<td>–</td>
<td>98.0–98.6(4)^c</td>
<td>–</td>
<td>–</td>
<td>[20]</td>
</tr>
</tbody>
</table>

_d This work, 153 K; _e high thermal motion, treat numbers with caution; _i 140 K; _d N_i is a terminal nitrogen; _e N_b is a bridging nitrogen; ^c C–Mn–C angle; ^a C–Mn–O angle; ^b internal N_b–Mn–N_b angle within the Mn_2N_2 ring; ^c internal C_b–Mn–C_b angle within the Mn_2C_2 ring.
were detected in difference Fourier maps and their presence is further supported by the observation of an N–H absorbance (3290 cm⁻¹) in the IR spectrum.

The Mn(1)–N(1) distance of 1.980(3) Å is comparable to the terminal Mn–N distances found in Mn[N(SiMe₃)₂]₂[THF] [8] and [Mn[N(SiMe₃)₂]₂] [9] (Table V). As expected, the bridging Mn–N distances in 4 (2.123–2.157(3) Å) are significantly longer than the terminal Mn–N distances in 4 and 2 (1.980(3), 1.993(8) Å respectively). However, this bridging Mn–N bond length is slightly shorter than, although comparable to, the other bridging Mn–N distances found in Mn₃[NEt₃]₂Cl₂[Li(THF)]₂ (2.150 Å) [3] and [Mn[N(SiMe₃)₂]₃]₂ (2.184 Å) [9].

Several non-linear trinuclear complexes of manganese(II) are known [17] and there are also two examples of linear mixed-valence (Mn(II)/Mn(III)) complexes, Mn₃(O₂CMe)₄(saladhp)₃(MeOH) [18] and [PPh₄]₂[Mn₃(pdt)₃] [19]. However, examples containing a linear arrangement of three manganese(II) centers are rare. Discrete linear trinuclear compounds of manganese(II) have only been encountered in a handful of derivatives, Mn₃°°(mesityl)₆ [20], Mn₃°°[NEt₃]₂[Li(THF)]₂ [3], Mn₃°°(O₂CCMe)₆(biphme) [21], Mn₃°°(OC(H)Bu')₆ [22], and recently Mn₃°°(O₂CCF)₆ [23], which was also prepared in our research group. To our knowledge, 4 is the first such compound with exclusively nitrogen donors [25].

We thank the Leibniz-Programm der Deutschen Forschungsgemeinschaft and the Bundesministerium für Forschung und Technologie (Sota) for the support of this work, and the Alexander von Humboldt Foundation for a fellowship to D.K.K.
[18] a) X. Li, D. P. Kessissoglou, M. L. Kirk, C. J. Bender, and V. L. Pecoraro, Inorg. Chem. 27, 1 (1988);
[25] Further details of the crystal structure investigations can be obtained on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD 55433, the names of the authors, and the journal citation.