Convenient Sign Determination of Various Coupling Constants in Alkynylplatinum(II) Phosphine Complexes

Bernd Wrackmeyer

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth

Z. Naturforsch. 46b, 35–38 (1991); received June 1, 1990

\[^{13}\text{C}/^{1}\text{H} \text{ NMR, } ^{31}\text{P}/^{1}\text{H} \text{ NMR, } ^{195}\text{Pt}/^{1}\text{H} \text{ NMR, Signs of Coupling Constants, Alkynylplatinum(II) Complexes} \]

The utilization of two-dimensional (2D) \(^{13}\text{C}/^{1}\text{H}, ^{31}\text{P}/^{1}\text{H}\) and \(^{195}\text{Pt}/^{1}\text{H}\) heteronuclear shift correlations for the sign determination of various coupling constants (e.g., \(J(195\text{Pt}^{13}\text{C}) > 0\) (trans), \(J(195\text{Pt}^{31}\text{P}) < 0\) (cis), \(J(195\text{Pt}^{13}\text{C}=^{1}\text{H}) < 0\) (trans), \(J(195\text{Pt}^{31}\text{P}) < 0\) (cis), \(J(195\text{Pt}^{13}\text{C}^{=^{1}\text{H}}) > 0, J(195\text{Pt}^{31}\text{P}) < 0, etc.\)) is demonstrated, using standard equipment. The complexes \([\text{trans-(Bu}^3\text{P})_2\text{Pt}^{3}\text{C}=^{1}\text{H}]=1\) and \([\text{cis-(Et}^3\text{P}^{2}\text{CH}^{2}\text{CH}_2\text{P}^2\text{Et})\text{Pt}^{3}\text{C}=^{1}\text{H}]=2\) serve as model compounds.

The combined application of \(^1\text{H}, ^{13}\text{C}, ^{31}\text{P}\) and metal (M) NMR measurements to transition metal chemistry has revealed a wealth of information on structure, bonding and dynamic properties in solution [1, 2]. Coupling constants of the type \(J(195\text{Pt}^{13}\text{C})\), \(J(195\text{Pt}^{31}\text{P})\) are particularly helpful in this respect. If the sign of \(J\) is known, the diagnostic value of these data is greatly enhanced. Although the signs of a large number of coupling constants are known for \(n=1\) [3], the situation is less clear if \(n>1\). The majority of sign determinations are based on selective heteronuclear double resonance experiments [4, 5], mostly \(^1\text{H}(X)\), requiring additional equipment or modifications of the spectrometers (working either in CW or in the PFT mode). With the advent of two-dimensional (2D) NMR techniques a convenient alternative is available, considering in particular the multifarious information to be gained from heteronuclear shift correlations [6, 7]. These experiments can be carried out using the standard equipment of modern PFT-NMR instruments and relatively little spectrometer time is needed. In this note the alkynylplatinum(II) complexes 1 and 2 serve as illustrative examples for such measurements.

Just by focusing on the ethyne-protons the 2D heteronuclear shift correlations of the type \(^{13}\text{C}/^{1}\text{H}\), \(^{195}\text{Pt}/^{1}\text{H}\) and \(^{195}\text{Pt}/^{1}\text{H}\) allow the comparison of the signs of the following pairs of coupling constants: \(J(195\text{Pt}^{13}\text{C}^{=^{1}\text{H}})/J(195\text{Pt}^{31}\text{P})\), \(J(195\text{Pt}^{31}\text{P})/J(195\text{Pt}^{13}\text{C}^{=^{1}\text{H}})\), \(J(195\text{Pt}^{13}\text{C})/J(195\text{Pt}^{31}\text{P})\), \(J(195\text{Pt}^{31}\text{P})/J(195\text{Pt}^{13}\text{C})\) for compound 1 are fully in agreement with previous selective \(^1\text{H}(^{31}\text{P})\) and \(^1\text{H}(^{195}\text{Pt})\) experiments, respectively [8]. The absolute signs given in Table I for the various coupling constants are consistently based on the known positive signs of \(J(=^{13}\text{C}^{=^{1}\text{H}})\), \(J(=^{13}\text{C}=^{1}\text{H})\) [9], \(J(=^{195}\text{Pt}^{31}\text{P})\) [10] and \(J(=^{195}\text{Pt}^{31}\text{P})\) [11].

As for 1 D \(^1\text{H}(X)\) or \(^1\text{H}(^{13}\text{C})\) experiments, the 2 D \(^1\text{H}^{1}\text{H}\) heteronuclear shift correlations require the presence of a third magnetically active nucleus for the determination of relative signs of coupling constants [4, 5]. This condition is fulfilled for an enormous number of organometallic compounds: In addition to \(^{13}\text{C}\) and \(^1\text{H}\), isotopomers with appreciable natural abundance exist with spin \(I=1/2\) nuclei such as \(^{25}\text{Si}, ^{119}\text{Sn}, ^{207}\text{Pb}, ^{199}\text{Hg}, ^{103}\text{Rh}, ^{185}\text{W}, ^{195}\text{Pt}, ^{115}\text{N}, ^{31}\text{P}, ^{79}\text{Se}, ^{125}\text{Te}\) etc. present. If four different magnetically active nuclei are present as in 1 or 2 more information can be gained in a single experiment (see Fig. 1). So far, most 2 D \(^1\text{H}^{1}\text{H}\) experiments, aiming at the sign determination of

\[
\begin{align*}
\text{Bu}_3\text{P} & \quad \text{I} \\
\text{H-C≡C-Pt-C≡C-H} & \quad \text{II}
\end{align*}
\]

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776:91, 0100–0035 $ 01.00/0
Fig. 1. Two-dimensional 13C/1H heteronuclear shift correlation for $[\textit{trans}-(\text{Bu}_3\text{P})_2\text{Pt}(C\equiv\equiv C\equiv \text{H})]$ (1), showing the 13C resonance signal (the asterisk marks the position of the 13C resonance signal which is not completely suppressed) and the ethyne-proton part of the normal 1H NMR spectrum. The recycle delay was set to 6 s and the fixed delays in the pulse sequence correspond to $^2J(=^1\text{C}-\text{H}) = 40$ Hz; a digital resolution of ≤ 2 Hz/pt in the F_2 dimension proved sufficient [spectrometer time (Bruker AC 200): 45 min]. The tilt of the cross peaks for the 195Pt satellites shows that $^1J(^{195}\text{Pt}^{13}\text{C} =)^{/}/^2J(^{195}\text{Pt}^{13}\text{C} =)^{/} > 0$. Similarly, the tilt in the triplet splitting proves that $^3J(^{13}\text{P}^{13}\text{C} =)^{/}/^6J(^{13}\text{P}^{13}\text{C} =)^{/} > 0$. Since $^6J(^{13}\text{P}^{13}\text{C} =)^{/} < 0$ (see Fig. 2) it follows that the sign of $^3J(^{13}\text{P}^{13}\text{C} =)^{/}$ is negative.

Fig. 2. Two-dimensional 195Pt/1H heteronuclear shift correlation for $[\textit{trans}-(\text{Bu}_3\text{P})_2\text{Pt}(C\equiv\equiv C\equiv \text{H})]$ (1), showing the entire range of the 195Pt NMR spectrum and the ethyne-proton part of the normal 1H NMR spectrum. The recycle delay was set to 6 s and the fixed delays in the pulse sequence correspond to $^2J(^{195}\text{Pt}^{13}\text{C} =)^{/}/^6J(^{195}\text{Pt}^{13}\text{C} =)^{/} = 45$ Hz and coupling to two equivalent protons. A digital resolution of ≤ 1.5 Hz/pt in the F_2 dimension proved sufficient [spectrometer time (Bruker AC 200): 30 min]. The low frequency and the high frequency cross peaks of the triplets in the 1H and 195Pt NMR spectra are related (tilt is shown by the dashed line), proving that $^1J(^{195}\text{Pt}^{13}\text{P})/^4J(^{13}\text{P}^{13}\text{C} =)^{/} < 0$. Since $^4J(^{13}\text{P}^{13}\text{P}) > 0$ [11] it follows that the sign of $^4J(^{13}\text{P}^{13}\text{C} =)^{/}$ is negative.

Table I. 1H, 13C, 31P, 195Pt NMR dataa,b of the alkynylplatinum(II) phosphine complexes 1 and 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{13}C (Pt-$^\equiv\equiv C-\text{H}$)</td>
<td>100.0 (a), 93.9 (b)</td>
<td>101.0 (a), 95.2 (b)</td>
</tr>
<tr>
<td>$^1J(^{195}$Pt13C)</td>
<td>$+951.0, +268$</td>
<td>$+1062.0, +300.8$</td>
</tr>
<tr>
<td>$^1J(^{31}$P13C)</td>
<td>$-14.5, +1.8$</td>
<td>$+137.3 (\text{trans}), +33.8 (\text{trans})$</td>
</tr>
<tr>
<td>$^1J(^{13}$C$^\equiv\equiv C-\text{H}$)</td>
<td>$+39.6, +225.0$</td>
<td>$-15.3 (\text{cis}), +1.2 (\text{cis})$</td>
</tr>
<tr>
<td>2H ($^\equiv\equiv C-\text{H}$)</td>
<td>2.32</td>
<td>42.0, 229.0</td>
</tr>
<tr>
<td>$^1J(^{31}$P13P)</td>
<td>$+44.1$</td>
<td>2.30</td>
</tr>
<tr>
<td>$^1J(^{31}$P13C$^\equiv\equiv C-\text{H}$)</td>
<td>-2.0</td>
<td>$+5.7 (\text{trans}), -2.0 (\text{cis})$</td>
</tr>
<tr>
<td>3P</td>
<td>$+3.5$</td>
<td>$+51.4$</td>
</tr>
<tr>
<td>$^3J(^{195}$Pt31P)</td>
<td>$+2394.0$</td>
<td>$+2224.0$</td>
</tr>
<tr>
<td>$^3J(^{195}$Pt13P)</td>
<td>-273.1</td>
<td>-412.1</td>
</tr>
<tr>
<td>$^1J(^{13}$C$^\equiv\equiv C$)</td>
<td>24.3, 26.7, 24.6, 14.0</td>
<td>23.9, 18.2, 8.5 (PET)</td>
</tr>
<tr>
<td>$^1J(^{195}$Pt13C)</td>
<td>$+34.0, +22.7, <2.0, <2.0$</td>
<td>$+56.4, +32.0, +25.0$</td>
</tr>
<tr>
<td>$^1J(^{31}$P13C)</td>
<td>$+35.4, +1.0, +12.8, <1.0$</td>
<td>$+43.8, +35.2, <1.0$</td>
</tr>
<tr>
<td>2H (PR)</td>
<td>2.10, 1.62, 1.40, 0.92</td>
<td>1.75, 2.05, 1.97, 1.15</td>
</tr>
<tr>
<td>$^1J(^{195}$Pt13H)</td>
<td>$+16.8, -1.5, <1.5, <1.5$</td>
<td>$+4.0, +17.0, +17.0, <1.0$</td>
</tr>
<tr>
<td>$^1J(^{31}$P13H)</td>
<td>$-7.2, +9.3, +1.5, <1.5$</td>
<td>$+13.7, -10.4, -10.4, +17.5$</td>
</tr>
</tbody>
</table>

a Chemical shifts δ relative to internal Me$_4$Si (1H, 13C), external 85% H$_3$PO$_4$ (31P) and Ξ_{195} = 21.4 MHz; b recorded from a solution of 1 in C$_6$D$_6$ (ca. 10%, 10 mm o.d. tube) and of 2 in CD$_2$Cl$_2$ (ca. 5%, 5 mm o.d. tube) at 25 °C; c the sign follows from the simulation of the spectra together with the results of the 2D NMR spectra; d $^3J(^{195}$Pt31P) = $\leq 5.0 \pm 0.5$ Hz, according to the simulation of 1H and 13C NMR spectra; e $\Sigma [^1J(^{13}$P13C) + $^1J(^{13}$P13PC$^\equiv\equiv C$)] + $\Sigma [^1J(^{31}$P13C) + $^1J(^{31}$PP13P$^\equiv\equiv C$)]; f $\Sigma [^1J(^{31}$P$^\equiv\equiv C$) + $^1J(^{13}$P13PC$^\equiv\equiv C$)]; g $\Sigma [^1J(^{13}$P$^\equiv\equiv C$) + $^1J(^{13}$P13PC$^\equiv\equiv C$)]; h $\Sigma [^1J(^{31}$P$^\equiv\equiv C$) + $^1J(^{31}$PP13P$^\equiv\equiv C$)]; i $\Sigma [^1J(^{31}$P13C$^\equiv\equiv C$) + $^1J(^{13}$P13PC$^\equiv\equiv C$)].
coupling constants, have been carried out for \(X = ^{13}\text{C} \) and were based on \(J(^{13}\text{C},^{1}\text{H}) \)[12, 13]. However, there is a wide selection of \(X \) nuclei, and the heteronuclear shift correlations can be based on very small coupling constants \(|\Delta J(X',H)| \), down to \(\approx 1 \) Hz, as we have shown recently [14].

The \(^1\text{H}\) NMR spectra of 1 and 2 are fairly complex except for the region of the ethyne-protons. Homonuclear \(^1\text{H}\)-decoupling by inserting a BIRD pulse [15] in the sequence for hetero- and homonuclear shift correlations simplifies the \(^1\text{H}\) NMR spectra in the \(F_1 \) dimension and makes a more straightforward comparison of the signs of coupling constants possible. Thus the \(^{195}\text{Pt}/^{1}\text{H}\) shift correlations obtained in this way show that \(J(^{195}\text{Pt},^{31}\text{P})/\Delta J(3^{1}\text{P},^{1}\text{H}) < 0 \) [1, 2 (\(\text{PET}_3 \)) and \(J(^{195}\text{Pt},^{31}\text{P})/\Sigma J(3^{1}\text{P},^{1}\text{H}) > 0 \) (2)]. Similarly, the tilt of the respective cross peaks in the \(^1\text{H}/^{1}\text{H}\) COSY spectra of 1 and 2 show that \(J(3^{1}\text{P},^{1}\text{H})/J(3^{1}\text{PC},^{1}\text{H}) < 0 \). Since the \(^{195}\text{Pt}/^{1}\text{H}\) shift correlation yields \(J(3^{1}\text{P},^{1}\text{H}) < 0 \), \(J(3^{1}\text{PC},^{1}\text{H}) \) for \(X = 2 \) (\(\text{PET}_3 \)) must be positive.

Many of the results described here can also be achieved by "inverse" 2D \(^1\text{H}(X) \) [16, 17] or \(^{31}\text{P}(X)\) experiments [17, 18], using equipment which has been implemented in the most recent generation of PFT-NMR spectrometers.

Experimental

The compounds 1 [8, 19] and 2 [20] were prepared following literature procedures. The NMR spectra (see also Fig. 1, 2 and Table I) were recorded using Bruker AC 200, AC 300 (\(^1\text{H},^{13}\text{C},^{31}\text{P},^{195}\text{Pt}\)) and AM 500 (\(^1\text{H},^{13}\text{C}\)) instruments at 25 ± 1 °C in 10 mm o.d. tubes (1, –10% in \(\text{C}_6\text{D}_6 \)) or 5 mm o.d. tubes (2, saturated, –5% in \(\text{CD}_3\text{Cl}_2 \)).

The 2D \(^1\text{H}/^{1}\text{H}\) heteronuclear shift correlations were based on the pulse sequence [6c] \([\pi/2(^1\text{H})-t_1-2\pi(\text{X})-t_1/2,\pi_1/2(^1\text{H}),\pi/2(\text{X})-\pi_2,\text{FID}(\text{X})] \), with \(\pi_1 = \Delta_2 = \{2J(\text{X},^{1}\text{H})\}^{-1} \) for \(X = ^{13}\text{C} (= \text{C}) \) and \(\Delta_2 \) optimized for coupling between \(X \) and two or more protons if \(X = ^{13}\text{C} \) (other than ethynyl carbons), \(^{31}\text{P},^{195}\text{Pt}\). Owing to the significant contribution from the chemical-shift-anisotropy (CSA) mechanism (\(B_0 \) dependence!) to \(^{195}\text{Pt}\) nuclear spin relaxation [21], best results for the 2D \(^{195}\text{Pt}/^{1}\text{H}\) shift correlations were obtained at lower field strength \(B_0 \). For the same reason, the intensity of \(^{195}\text{Pt}\) satellites in all 2D spectra are much reduced with respect to 1D spectra.

I am grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for support of this work. I thank Dr. D. Schlosser (Chemische Fabrik Pfersee, Augsburg) for the use of the Bruker AC 200 instrument.

b) W. McFarlane and D. S. Rycroft, Ann. Rep. NMR Spectrosc. 9, 319 (1979);

b) R. Benn and H. Günther, Angew. Chem. 95, 381 (1983); Angew. Chem., Int. Ed. Engl. 22, 350 (1983);

b) B. Wrackmeyer, unpublished results.
[16] a) L. Müller, J. Am. Chem. Soc. 101, 4481 (1979);