The Molecular Structures of Hexamethyldistannane, (CH$_3$)$_6$Sn$_2$, and Dimethylditellurane, (CH$_3$)$_2$Te$_2$, by Gas Electron Diffraction

Arne Haaland*, Andreas Hammel, Hanne Thomassen, and Hans V. Volden
Department of Chemistry, University of Oslo, Box 1033, Blindern, N-0315 Oslo 3, Norway
Harkesh B. Singh and Pawan K. Khanna
Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India
Z. Naturforsch. 45b, 1143 – 1146 (1990); received February 2, 1990
Gas Electron Diffraction, Hexamethyldistannane, Dimethylditellurane

Gas electron diffraction data of both compounds were recorded on Balzers Eldigraph KDG-2 with nozzle temperatures of about 25 °C (Me$_6$Sn$_2$) and 130 °C (Me$_2$Te$_2$).

Exposures were made with nozzle-to-plate distances of 50 and 25 cm. The plates were photometered and the data processed by standard procedures. The resulting modified molecular intensity curves extended from $s = 20.00$ to 147.50 nm$^{-1}$ with increment $\Delta s = 1.25$ nm$^{-1}$ (six plates, 50 cm) and from $s = 50.00$ to 225.00 nm$^{-1}$ with increment $\Delta s = 2.50$ nm$^{-1}$ (six plates, 25 cm) for Me$_6$Sn$_2$ and from $s = 35.00$ to 145.00 nm$^{-1}$ with increment $\Delta s = 1.25$ nm$^{-1}$ (six plates, 50 cm) and from $s = 70.00$ to 200.00 nm$^{-1}$ (four plates, 25 cm) for Me$_2$Te$_2$.

Atomic scattering factors, $f'(s)$, were taken from Schäfer, Yates and Bonham [3]. The molecular intensities were modified by multiplication with $s/|f_E'(s)|/|f_C'(s)|$, $E =$ Sn or Te.

The present study was undertaken to provide reference values for Sn–Sn and Te–Te single bonds in simple, gaseous molecules.

Experimental

Hexamethyldistannane, Me$_3$SnSnMe$_3$, with stated purity of 99% was purchased from Aldrich-Chemie and used without further purification. Dimethylditellurane, MeTeTeMe, was synthesized from Na$_2$Te$_2$ and CH$_3$I as described in ref. [1] and characterized by high resolution mass spectrometry [2].

The gas electron diffraction data of both compounds were recorded on Balzers Eldigraph KDG-2 with nozzle temperatures of about 25 °C (Me$_6$Sn$_2$) and 130 °C (Me$_2$Te$_2$).

Exposures were made with nozzle-to-plate distances of 50 and 25 cm. The plates were photometered and the data processed by standard procedures. The resulting modified molecular intensity curves extended from $s = 20.00$ to 147.50 nm$^{-1}$ with increment $\Delta s = 1.25$ nm$^{-1}$ (six plates, 50 cm) and from $s = 50.00$ to 225.00 nm$^{-1}$ with increment $\Delta s = 2.50$ nm$^{-1}$ (six plates, 25 cm) for Me$_6$Sn$_2$ and from $s = 35.00$ to 145.00 nm$^{-1}$ with increment $\Delta s = 1.25$ nm$^{-1}$ (six plates, 50 cm) and from $s = 70.00$ to 200.00 nm$^{-1}$ (four plates, 25 cm) for Me$_2$Te$_2$.

Atomic scattering factors, $f'(s)$, were taken from Schäfer, Yates and Bonham [3]. The molecular intensities were modified by multiplication with $s/|f_E'(s)|/|f_C'(s)|$, $E =$ Sn or Te.

The molecular structure of either compound is characterized by high resolution mass spectrometry [2].

Structure refinements

Structure refinements were based on molecular models of D$_3$ (Me$_6$Sn$_2$) and C$_2$ (Me$_2$Te$_2$) symmetry. In both molecules methyl groups were assumed to have C$_3v$ symmetry with the threefold axes coinciding with the C–E bonds.

The molecular structure of either compound is characterized by high resolution mass spectrometry [2].

Structure refinements were based on molecular models of D$_3$ (Me$_6$Sn$_2$) and C$_2$ (Me$_2$Te$_2$) symmetry. In both molecules methyl groups were assumed to have C$_3v$ symmetry with the threefold axes coinciding with the C–E bonds.

The molecular structure of either compound is characterized by high resolution mass spectrometry [2].

The molecular structure of either compound is characterized by high resolution mass spectrometry [2].
The molecular structures of hexamethyldistannane
\[\text{Me}_3\text{SnSnMe}_3 \]
and dimethylditellurane
\[\text{MeTeTeMe} \]

Table I. Bond distances, valence angles, dihedral angles and root-mean-square amplitudes of vibration (\(\ell \)) of hexamethyldistannane and dimethylditellurane

<table>
<thead>
<tr>
<th></th>
<th>Me(_3)SnSnMe(_3) (E = Sn)</th>
<th>MeTeTeMe (E = Te)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond distances/pm</td>
<td>(r_j/\text{pm})</td>
<td>(\ell/\text{pm})</td>
</tr>
<tr>
<td>E--E</td>
<td>277.6(3)</td>
<td>7.0(3)</td>
</tr>
<tr>
<td>E--C</td>
<td>216.5(3)</td>
<td>7.6(4)</td>
</tr>
<tr>
<td>C--H</td>
<td>110.3(4)</td>
<td>9.4(5)</td>
</tr>
<tr>
<td>Valence angles/deg</td>
<td>(<\text{EEC}>)</td>
<td>111.9(4)</td>
</tr>
<tr>
<td></td>
<td>(<\text{ECH}>)</td>
<td>111.8(7)</td>
</tr>
<tr>
<td>Dihedral angles/deg</td>
<td>(\phi(\text{CEEC}))</td>
<td>37(8)</td>
</tr>
<tr>
<td></td>
<td>(\phi(\text{EECH}))</td>
<td>27(14)</td>
</tr>
<tr>
<td>Non-bonded distances/pm</td>
<td>(E--C)</td>
<td>411(1)</td>
</tr>
<tr>
<td></td>
<td>(E--H)</td>
<td>277(1)</td>
</tr>
<tr>
<td></td>
<td>(C--C^b)</td>
<td>348(1)</td>
</tr>
<tr>
<td></td>
<td>(C--C^c)</td>
<td>446(6)</td>
</tr>
<tr>
<td></td>
<td>(C--C^d)</td>
<td>532(12)</td>
</tr>
<tr>
<td></td>
<td>(C--C^e)</td>
<td>581(6)</td>
</tr>
<tr>
<td>R(^2) (50 cm)</td>
<td>2.2%</td>
<td>4.0%</td>
</tr>
<tr>
<td>R(^2) (25 cm)</td>
<td>9.0%</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

\(^a\) Estimated standard deviations in parentheses in units of the last digit. Non-refined amplitudes of vibration in square brackets; \(^b\) within a Me\(_3\)Sn fragment; \(^c\) assumed equal; \(^d\) mole fraction; \(^e\) \(R = [\Sigma W(I_{\text{obs}} - I_{\text{calc}})^2 / \Sigma W(I_{\text{obs}})]^{1/2} \).

have been determined with reasonable accuracy despite the presence of the TeMe\(_2\) impurity, we did not think it worth while to record data with a pure sample.

The \(R \)-factors, Table I, show that the 25 cm plates of both compounds are of poor quality. This, in our experience, is often the case for compounds containing fifth period elements.

Fig. 1. Experimental (●) and calculated (—) radial distribution curves for Me\(_3\)SnSnMe\(_3\). Below: Difference curve. Artificial damping constant \(k = 30 \text{ pm}^2 \).

Fig. 2. Experimental (●) and calculated (—) radial distribution curves for MeTeTeMe. Peaks representing distances in the TeMe\(_2\) impurity are indicated by stippled bars. Below: Difference curve. Artificial damping constant \(k = 50 \text{ pm}^2 \).
Discussion

Molecular shapes

The gas electron diffraction data of Me₃SnSnMe₃ and MeTeTeMe are in good agreement with molecular models of D₃ and C₂ symmetry, respectively.

The estimated standard deviations of the dihedral angles φ(CEE) and φ(EECH), $E = Sn$ or Te, are so large that they may be regarded as undetermined. The reason for this is probably the small scattering powers of C and H compared to Sn or Te atoms.

Self consistent field molecular orbital calculations on Sn₂H₆ with effective core potentials and a double zeta basis for the valence electrons followed by second-order MP calculations of correlation energies, indicate that the equilibrium geometry is staggered (D₃d) with a rotational barrier of 0.39 kcal mol⁻¹ [5]. The experimentally determined barrier to internal rotation about the Sn-C bond in H₃SnCH₃ [6] is 0.65 kcal mol⁻¹ (calculated [5] 0.57 kcal mol⁻¹). It seems likely, therefore, that both rotational barriers in Me₃SnSnMe₃ are of the order of the thermal energy available during our experiment, RT = 0.60 kcal mol⁻¹. Under these circumstances it is not surprising that the best thermal average values for φ(CSnSnC) and φ(SnSnCH) fall near the middle of the range between eclipsed ($\varphi = 0°$) and staggered (60°) conformations.

The best value of the dihedral angle φ(CTeTeC) in MeTeTeMe is close to the more accurately determined dihedral angles in Me₂Se₂ [7], Me₂S₂ [8] and Me₂O₂ [9]; 85(4)°, 84(1)° and 119(4)°, respectively.

E–E bond distances

The observed E–E bond distances in gaseous Me₃Sn–SnMe₃, Me₃Sb–SbMe₃ [10], MeTe–TeMe and I₂ [11] (Table II) are in good agreement with the values calculated by doubling the normal single bond radii listed in ref. [12]; 280 pm, 282 pm, 270 pm and 266 pm, respectively. They are, however, significantly shorter than the single bonds encountered in the solid elements:

$α$-Sn has a diamond structure with Sn–Sn bonds about 3 pm greater than in Me₃SnSnMe₃ [13]. Similarly, the Ge–Ge bond in $α$-Ge [13], 245.0 pm, is about 5 pm greater than in gaseous H₃GeGeH₃ [14], 240.3(3) pm, and the Si–Si bond in $α$-Si [13], 235.2 pm, is about 2 pm longer than in gaseous H₃SiSiH₃ [15], 233.1(3) pm. We assume the elongation to be due to weak repulsion between the four metal atoms bonded to a fifth: Using the force constant f_{Sn-Sn} obtained by normal coordinate analysis of H₃SnSnH₃ [5], the energy required to extend the Sn–Sn bond by 3 pm is less than 0.10 kcal mol⁻¹.

In crystalline I₂ each I atom participates in one normal bond at 271.5 pm and two secondary bonds [16] at 350 and 356 pm, the latter are 80 to 90 pm greater than the normal, covalent bond in gaseous I₂. The coordination number of the atoms in $α$-Te [17], $α$-Sb [12] and $β$-Sn [12] is six; in $α$-Te each atom participates in two normal and four secondary bonds, the latter are 80 pm longer than the normal bond in gaseous MeTeTeMe; in $α$-Sb each atom participates in three covalent and three secondary bonds, the latter are 53 pm longer than the normal bond in gaseous Me₂SbSbMe₂; finally, in $β$-Sn each atom participates in four normal and two secondary bonds which are 40 pm longer than the normal bond in Me₃SnSnMe₃. Formation of the secondary bonds is in every case accompanied by elongation of the normal bonds, in crystalline I₂ by 4 pm, in $α$-Te by 15 pm, in $α$-Sb by 9 pm and in $β$-Sn by 25 pm.

We are grateful to the Norwegian Research Council for Science and the Humanities (NAVF) and the VISTA program for general support and to the NAVF for a scholarship to Andreas Hammel.

<table>
<thead>
<tr>
<th>Gas phase</th>
<th>Me₃Sn–SnMe₃</th>
<th>Me₃Sb–SbMe₃</th>
<th>MeTe–TeMe</th>
<th>I–I</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Sn</td>
<td>277.6(3) pm</td>
<td>281.8(2) pm</td>
<td>268.6(3) pm</td>
<td>267.7(3) pm</td>
</tr>
<tr>
<td>β-Sn</td>
<td>281.0 pm (4 x)</td>
<td>290.8 pm (3 x)</td>
<td>283.5 pm (2 x)</td>
<td>271.5 pm (1 x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid phase</th>
<th>Me₃Sn–SnMe₃</th>
<th>Me₃Sb–SbMe₃</th>
<th>MeTe–TeMe</th>
<th>I–I</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Sn</td>
<td>281.0 pm (4 x)</td>
<td>290.8 pm (3 x)</td>
<td>283.5 pm (2 x)</td>
<td>271.5 pm (1 x)</td>
</tr>
<tr>
<td>β-Sn</td>
<td>302.2 pm (4 x)</td>
<td>335.5 pm (3 x)</td>
<td>349.1 pm (4 x)</td>
<td>353 pm (2 x)</td>
</tr>
</tbody>
</table>

Table II. E–E single bond distances, $E = Sn$, Sb, Te or I in simple gaseous molecules Me₃E–EMe₃, Me = CH₃, and in the crystalline elements [13].

* This work; † ref. [10]; ‡ ref. [11].