Structure of a New Eudesmane Sesquiterpene Argutinin from *Pluchea arguta* Boiss

Viqar Uddin Ahmad* and Kaniz Fizza

H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan

Z. Naturforsch. 43b, 911–913 (1988); received February 26, 1988

Sesquiterpene, Eudesmane, *Pluchea arguta*, Compositae

A new eudesmane sesquiterpene, argutinin (I) has been isolated from *Pluchea arguta* Boiss. Its structure has been elucidated by spectroscopic methods.

Introduction

Pluchea arguta Boiss (Syn. *Conyza odontophylla* Boiss) (Compositae) grows as a common weed in Sind and other parts of Pakistan [1]. Some of the *Pluchea* species are noted for their medicinal properties [2]. A number of compounds have been isolated from the *Pluchea* species [3–5].

In our previous publications we have reported the isolation and structure of several known and new compounds from the whole plant extract [6, 7]. The present communication deals with the isolation and structure elucidation of another new type of eudesmane derivative named as argutinin (I) from this plant.

Results and Discussion

The petroleum ether extract from the fresh whole plant of *P. arguta* was chromatographed on a Si gel column as described in experimental. Argutinin (I) was obtained from the CHCl₃–EtOAc (70:30) eluate. Which was subjected to repetitive flash column chromatography with C₆H₆–EtOAc (60:40) affording pure I as colourless gum. The purity of I was checked on TLC, and HPTLC (CHCl₃:MeOH 8.5:1.5) plates as well as on HPLC using Z-Module with RP-18 cartridge and MeOH:H₂O (60:40) as mobile phase.

The pure argutinin (I), colourless gum, showed [α]D²⁰ +102° (c, 1, CHCl₃). Fast atom bombardment mass spectrum showed the molecular ion peak m/z 424, corresponding to the molecular formula C₂₂H₃₂O₈. The peak observed at m/z 408 attributable to the formula C₂₂H₃₂O₇ (M⁺–O). While high resolution mass spectrum exhibited an important fragment at m/z 390.2032 (C₂₂H₂₉O₈, calcd. 390.2042) due to the loss of H₂O from the molecular ion. The peak at m/z 366.2122 (C₂₀H₂₆O₆, calcd. 366.2042) [M⁺–O–(CH₂=CH=O)], and at m/z 348.125 having the composition C₂₀H₂₅O₇. Another fragment appeared at m/z 333.1691 [M⁺–H₂O–(CH₂=CH=O)–CH₃] leading to the formula C₁₉H₂₅O₆. The fragment ion appeared at m/z 233.1162 with the composition C₁₄H₁₇O₃ was due to the loss of epoxyangelate ester side chain from the fragment m/z 333 and at m/z 215.1103 was due to the loss of H₂O molecule from the above fragment having the composition C₁₄H₁₅O₂. The UV (MeOH)

The UV (MeOH)
spectrum of I exhibited the maxima at 227 nm indicating the unsaturation in the molecule. The IR (CHCl₃) spectrum exhibited band at 3540 (OH), 1745 (acetate carbonyl), 1730 (epoxyangelate carbonyl) and 1670 cm⁻¹ (α,β-unsaturation ketone).

The ¹H NMR of argutinin (I) in CDCl₃ (300 MHz) displayed typical signals for epoxyangelate, a quartet for 1H resonating at δ 3.06 with a coupling constant of 6Hz, attributed to H-3', a doublet of 3H at δ 1.32 (J = 6Hz) for 3×H-4', a singlet for sec. methyl at δ 1.59 for 3×H-5'. A singlet for 3H at δ 1.98 indicating the acetate moiety in the molecule. The H-6 olefinic proton was observed at δ 6.84 (d, J = 3Hz), indicating the stereochemistry at C-4. Small differences were also observed in the chemical shift of H-15 and the acetate methyl which appeared at δ 1.33 and δ 1.98 respectively, suggesting the β-orientation of acetate moiety at C-4. A downfield 1H singlet resonated at δ 7.92 indicating the presence of hydroperoxide group in the molecule. The existence of OOH was also confirmed by loss of H₂O₂ from the molecular ion in mass spectrum. The position of hydroperoxide at C-11 was followed from the downfield shift of the corresponding methyl signals at δ 1.48 and δ 1.52 for 3×H-13 and 3×H-12 respectively. The stereochemistry at C-3 was deduced from the coupling J₂,₃ = 3Hz specific for the α-orientation of ester group, which was also suggested by the chemical shift of 3-H at 5.9 (t, J = 3Hz).

2-D NMR measurements determined the multiplicities of the proton signals through 2D-J-resolved spectrum, while the coupling interactions were established by COSY-45 experiment. NOESY spectrum served to show the relative stereochemistry at several points in the molecule. Strong cross peaks were observed between methylene protons of C-9 and 14-methyl protons. The n.O.e. interaction between 13-methyl at δ 1.48 and olefinic proton of C-6 at δ 6.84 could also be observed. The 15-methyl proton at δ 1.33 showed n.O.e. interaction with C-6 olefinic proton at δ 6.84, suggested the α-orientation of 15-methyl at C-4. Similarly the n.O.e. interaction between the C-5' methyl proton and C-3' proton at δ 1.59 and δ 3.06 respectively could also be observed.

The ¹³C NMR spectrum (broad band and DEPT) in CDCl₃ (75.4 MHz) indicated that the presence of hydroperoxy group at C-11 shifted the geminal methyls C-12 and C-13 downfield and also the C-11 also shifted downfield as compare to 4-epi-plucheinol [6]. Presence of an acetate group at C-4 shifts the C-3 signal to high field, but an expected strong deshielding was observed for C-4 (approximately 8 ppm as compare to 4-epi-plucheinol). The complete ¹³C-NMR are given in Table I.

The status of each carbon confirmed through DEPT experiment.

Experimental

Optical rotation was measured in CHCl₃ on Polartronic-D polarimeter. UV spectrum scanned on Shimadzu UV 240 spectrophotometer. IR was recorded on JASCO A-302 spectrophotometer. ¹H and ¹³C NMR were scanned on Bruker AM-300 Nuclear Magnetic Resonance spectrometer. The mass spectra were measured on Varian MAT-112 and MAT-312 spectrometer connected to MAT-188 data system and PDP 11/34 computer system. Flash column chromatography was performed on Eyalas Flash Chromatography EF-10 model, using silica gel 60, 230–400 mesh size (E. Merck). HPLC was carried out on Z-Module Radial Compression Separation System millipore (Waters) having RP-18 cartridge, using Constrametric 111 pump (LDC Milton Roy) coupled with UV 1 DEC-100-11 UV dector (JASCO).

Extraction and isolation: The fresh plant material of Pluchea arguta Boiss. Collected from Karachi, and identified by a taxonomist of Botany Department, University of Karachi.

The whole plant of P. arguta Boiss (8 kg) was homogenized by Ultra-Turrax homogenizer in hexane and kept at room temperature for about 15 days. The residue obtained after evaporation of hexane

<table>
<thead>
<tr>
<th>Carbon</th>
<th>1</th>
<th>Carbon</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.00</td>
<td>11</td>
<td>72.42</td>
</tr>
<tr>
<td>2</td>
<td>25.85</td>
<td>12</td>
<td>29.57</td>
</tr>
<tr>
<td>3</td>
<td>73.70</td>
<td>13</td>
<td>28.99</td>
</tr>
<tr>
<td>4</td>
<td>80.10</td>
<td>14</td>
<td>17.81</td>
</tr>
<tr>
<td>5</td>
<td>49.02</td>
<td>15</td>
<td>18.21</td>
</tr>
<tr>
<td>6</td>
<td>140.20</td>
<td>1'</td>
<td>168.20</td>
</tr>
<tr>
<td>7</td>
<td>144.29</td>
<td>2'</td>
<td>59.90</td>
</tr>
<tr>
<td>8</td>
<td>201.99</td>
<td>3'</td>
<td>59.61</td>
</tr>
<tr>
<td>9</td>
<td>57.50</td>
<td>4'</td>
<td>13.29</td>
</tr>
<tr>
<td>10</td>
<td>39.28</td>
<td>5'</td>
<td>19.22</td>
</tr>
<tr>
<td></td>
<td>CH₃COO</td>
<td></td>
<td>169.24</td>
</tr>
<tr>
<td></td>
<td>CH₂COO</td>
<td></td>
<td>20.20</td>
</tr>
</tbody>
</table>

The status of each carbon confirmed through DEPT experiment.
extract was chromatographed on a large silica gel column and eluted with solvent of increasing polarity in the order, pet-ether pet-ether-CHCl₃, CHCl₃, CHCl₃-EtOAc, EtOAc, EtOAc-MeOH and finally with pure MeOH. The fractions eluted with CHCl₃-EtOAc (70:30) was subjected to repetitive flash column chromatography using C₆H₆-EtOAc (60:40) eluant furnished pure argutinin (1) as colourless gum. The purity of 1 was confirmed on TLC as well as on HPTLC (CHCl₃: MeOH, 8.5:1.5) and by HPLC using Z-Module RP-18 cartridge with MeOH: H₂O (60:40) as mobile phase.

Argutinin (1)

Colourless gum [α]D +102° (c, 1, CHCl₃), UV (MeOH) λmax 227 nm. IR (CHCl₃): v max 3540 (OH), 1745 (acetate carbonyl), 1730 (epoxyangelate carbonyl) and 1670 (α,β-unsaturated ketone) cm⁻¹.

1H NMR (CDCl₃, 300 MHz): δ 0.96 (s, 3×H-14), 1.32 (d, J = 6 Hz, 3×H-4'), 1.33 (s, 3×H-15), 1.48 (s, 3×H-13), 1.52 (5, 3×H-12), 1.59 (s, 3×H-5'), 1.98 (s, 3H, OCOCH₃), 2.32 (m, 2×H-9), 2.82 (d, J = 3 Hz, H-5), 3.06 (q, J = 6 Hz, H-3'), 5.90 (t, J = 3 Hz, H-3), 6.84 (d, J = 3 Hz, H-6), 7.92 (br, s, OOH). 13C NMR: See Table I. FABMS: m/z 424 (C₃₂H₃₂O₈) [M⁺]⁺, 408 (C₃₂H₃₂O₇) [M⁺-O]⁺. HRMS: m/z 390.2032 (C₂₂H₃₀O₆, calcd. 390.2042) [M⁺-H₂O]⁺, 366.2122 (C₂₀H₂₆O₆, calcd. 366.2042) [M⁺-O-(CH₂=CH=CH₂)]⁺, 348.1925 (C₂₀H₂₆O₅, calcd. 348.1936) [M⁺-H₂O-(CH₂=CH=CH₂)]⁺, 333.1691 (C₁₉H₂₆O₅, calcd. 333.1701) [M⁺-H₂O-(CH₂=CH=CH₂)-CH₃], 1233.1162 (C₁₄H₁₇O₅, calcd. 1233.1172) [M⁺-H₂O-(CH₂=CH=CH₂)-CH₃-epoxyangelate]⁺, 215.1071 (C₁₄H₁₇O₂, calcd. 215.1071) [M⁺-H₂O-(CH₂=CH=CH₂)-CH₃-epoxyangelate-H₂O]⁺.
