Bonding in the BaPdSn₃ Structure

Jing Li and Roald Hoffmann*

Department of Chemistry and Materials Science Center, Cornell University, Ithaca, NY 14853-1301

Z. Naturforsch. 41b, 1399–1415 (1986); received June 27, 1986

Bonding in the BaPdSn₃ Structure

The body-centered BaPdSn₃ structure contains Sn atoms in tetrahedral and square-pyramidal five-coordinate sites, and Pd in square-pyramidal environments. The PdSn₃²⁻ three-dimensional lattice can be formally decomposed into first two-dimensional layers, then into a square Sn lattice with capping Sn and Pd atoms. This geometrical decomposition also serves as a construction principle for building up the electronic structure of this material. Many similarities to BaAl₄ emerge. There is electron deficient multicenter bonding in the layer, normal two-center bonding Sn–Pd between layers. Pd 4d orbitals do not contribute significantly to the bonding.

Since the body centered tetragonal BaAl₄ was first made by Andress and Alberti [1] more than 400 compounds with the same structure have been synthesized [2]. Among these, most have been found in the R,M,A ternary system, where R is a rare earth or sometimes an alkaline earth; M, a transition metal; and A, a group 13, 14, or 15 element such as silicon, boron, phosphorus or homologues [3].

There are two different Al sites in the BaAl₄ structure: the tetrahedral sites, so called t-sites, and the pyramidal sites, or p-sites, as shown in 1. Two of the four aluminium atoms in each primitive unit cell occupy the tetrahedral sites and the other two take the pyramidal ones. In the ternary derivatives of BaAl₄ it is the M and A atoms that alternate positions at these sites. There exist seven hypothetical structures possible for such systems with the same unit cell as BaAl₄, if no short M–M contacts are permitted [4]. In fact, three of these have been confirmed experimentally and they are known as the ThCr₂Si₂ type [5], 2a, CaBe₂Ge₂ type [6], 2b, and BaNiSn₃ type [7], 2c. In the ThCr₂Si₂ type structure, the transition metals are almost always located in the tetrahedral sites and the main group elements in pyramidal sites. In the CaBe₂Ge₂ type structure, however, the M and A atoms share t- and p-sites equally. The third BaAl₄ ternary derivative, BaNiSn₃, has its A atoms on all tetrahedral sites, and also on half of the pyramidal sites. The M atoms thus place themselves on another half of the p-sites.

The ternary compounds have many interesting electrical and magnetic properties. The “heavy fermion” material CeCu₂Si₂ [8], and the magnetic properties of the same crystal [9] serve as particular exam-
pies. Many superconducting ternary silicides discovered so far come from the BaAl₄ family: YbPd₂Ge₂, LaPd₂Ge₂, LaNi₂Ge₂ [10] and the low temperature form of YIr₂Si₂ [11] (ThCr₂Si₂ type); the high temperature form of YIr₂Si₄ and LaIr₂Si₄, which have the CaBe₂Ge₂ structure [11]; and LaMSi₃ (M = Ir, Rh) [12], which is of the BaNiSn₃ type, represent all three experimentally found structures described above.

Chemists also have shown their interest in the geometrical deformations, bonding patterns and chemical properties of these lovely crystals. A series of papers describing the ThCr₂Si₂ and CaBe₂Ge₂ type structures has been recently written by one of us and C. Zheng [13]. This work is a continuation of the cited research. BaPdSn₃ [14], a BaNiSn₃ type structure, serves as the main example in the calculations. We proceed by constructing a Sn₃ layer structure from a square lattice of tin atoms with one apical Sn per unit cell, followed by inserting a Pd atom into the adjacent apical site of the opposite face to form a PdSn₃²⁻ layer. Finally, by stacking these layers, we arrive at a three dimensional body-centered tetragonal lattice. With the help of the tight-binding method of the extended Hückel type [15] we are able to show how similar the bonding pattern is to the BaAl₄ structure which was described by Zheng and Hoffmann [16].

Sn Square Lattice and Sn₃ Layer Structure

The Sn square lattice is shown in 3. The smallest unit cell consists of a single Sn atom. The Sn–Sn distance is 3.44 Å, the same as that measured in the BaPdSn₃ crystal. The electronic structure of a square lattice is well known [17] and the calculated band structure shown in Fig. 1 gives the expected pattern: The lowest s band does not cross the three p bands due to the large separation between tin atoms. The phase relation of the orbitals is as follows: At the Γ point, the center of the Brillouin zone, orbitals carry the same sign at all lattice sites. At the X point, however, they are of the same sign in the y-direction but of opposite sign in the x-direction. At the M point, each orbital has the same sign as its nearest neighbors and opposite sign to the second nearest neighbors. The in-phase combination of s orbitals at Γ is pure σ bonding and leads to lowest energy. The pₓ (or pᵧ) combination at the same point is at higher energy, due to strong σ* antibonding in the x-direction (or the y-direction). The π bonding here is weak and the σ bonding dominates. The highest energy occurs at X for the pᵧ combination. There, the pₓ orbital is pushed up high because of strong σ* and π* antibonding. The pᵧ orbitals, with only π type interactions, have a small dispersion. A schematic drawing of these orbitals at Γ, X and M is presented in Fig. 1 along with the band structure.

Next, we need to construct a band structure for a larger unit cell (two Sn atoms) for such a cell is re-
quired when forming a Sn₃ layer. A simple way is to “fold back” [18] the band structure of the small cell. This “folding-back” technique has been carefully described and applied in a number of cases [19], so we will not give a detailed description here. The process does not change the nature of the bands, but it does allow a ready construction and understanding of the bands of the solid with the larger unit cell. We perform the folding-back process in Fig. 2a. The big and small cells are shown in 4a and 4b and the corresponding first Brillouin zones (BZ) in 4c and 4d respectively. The BZ of the large cell is half the size of that for the small unit cell since the large cell itself is twice the size of the small one. \(\mathbf{a}_1, \mathbf{a}_2 \) and \(\mathbf{a}'_1, \mathbf{a}'_2 \) are the primitive lattice vectors defined for the big and the small cell respectively, and \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}'_1, \mathbf{b}'_2 \), the corresponding reciprocal lattice vectors. Notice that all the points in the BZ of the small cell are labeled with a prime. On folding, \(\Gamma'N' \) and \(\Gamma'N' \) lines in 4d become the \(\Gamma'X' \) in 4c. \(\Gamma'X' \) and \(\Gamma'M' \) become \(\Gamma'M \). The resultant band structure is plotted in Fig. 2b. It is exactly what one would obtain if one calculated the bands of the larger unit cell.

Now we add apex Sn atoms to the square lattice. The layer thus constructed is depicted in 5. The distance between an apical Sn and its nearest neighboring atom in the square lattice is 3.05 Å, only a little longer than an ordinary Sn-Sn single bond. So we would expect substantial interaction upon formation

Fig. 2. Band structure of the square lattice of Sn atoms. (A) Before the “folding back” process, (B) after the process. The arrows in (A) indicate the folding directions.
of the layer. Schematic diagrams drawn in Fig. 3 illustrate how energy levels are pushed up or down when local interactions are turned on.

Fig. 3a shows what happens at the \(\Gamma \) point. We denote various orbital combinations of the square lattice before interaction as \(\psi_x', \psi_y', \psi_z', \psi_x, \psi_y, \psi_z \) and \(s, p_x, p_y, p_z \). The \(s, p_x, p_y, p_z \) orbitals of an apical atom are simply labeled \(s, p_x, p_y, p_z \). We have no guidance at this moment of the layer. Schematic diagrams drawn in Fig. 3 illustrate how energy levels are pushed up or down when local interactions are turned on.

Fig. 3a shows what happens at the \(\Gamma \) point. We denote various orbital combinations of the square lattice before interaction as \(\psi_x', \psi_y', \psi_z', \psi_x, \psi_y, \psi_z \) and \(s, p_x, p_y, p_z \). The \(s, p_x, p_y, p_z \) orbitals of an apical atom are simply labeled \(s, p_x, p_y, p_z \). We have no guidance at this

Fig. 3. Schematic diagrams shown the orbital interactions within a Sn layer: (A) at \(\Gamma \) point of the Brillouin zone, (B) at M point. The square lattice orbitals before interaction are always shown at left and the apical tin orbitals, at right.
point as to the precise degree of s and p mixing in these hybrids, so for simplicity let us take the hybrids as 50% s, 50% p. ψ_1 has the right symmetry to interact with ψ_s in a σ bonding way. As a result, ψ_s is pushed down and ψ_1 is pushed up very high. ψ_2, on the other hand, does not interact with any square-lattice orbitals and remains nonbonding. p_x and p_z, being of π type symmetry, mix with the degenerate pair ψ_x, ψ_y and are lifted up in energy. The doubly noded combinations ψ_x' and ψ_y' do not find any appropriate partners to interact with and stay where they are. The energy levels after interaction are shown in the central part of Fig. 3a.

A similar correlation diagram at the M point is constructed in Fig. 3b. Notice that here orbital combinations of the square lattice before interaction form four degenerate pairs. They are ψ_x and ψ_x'; ψ_y and ψ_y'; ψ_z and ψ_z'; ψ_1' and ψ_2' in order of increasing energy. Taking linear combinations of ψ_x and ψ_y yields two orbitals: $\psi(xy)$ and $\psi'(xy)$, 6. $\psi(xy)$, being of σ type symmetry, can now interact with ψ_1 and shifts to higher energy. The other orbital, $\psi'(xy)$ is nonbonding and does not change its position. p_x and p_y orbitals, on the other hand, have the correct symmetry to mix with both ψ_x's and ψ_y's, but interact predominantly with ψ_z's due to their better match in energy.

The calculated band structure for the Sn$_3$ layer along high symmetry lines M Γ and ΓX is plotted in Fig. 4. The unit cell we used in calculations is shown in 7 at upper right. An alternative choice is the shaded unit cell at lower left. In any case, each unit cell contains three Sn atoms, one at an apical site and the rest in the square lattice. We should point out here that the apical sites and the square lattice sites will turn out to be the p- and t-sites respectively when a three dimensional crystal is built up, and so we may denote the atoms in these sites as Sn$_a$ and Sn$_n$. An avoided crossing occurs between the 6th and 7th band at about 1/4 of the (reciprocal space) distance from the Γ point along ΓM. This is due to the fact that both of these orbitals are antisymmetric with respect to the mirror plane shown in 8. Another avoided crossing along the ΓX line can be understood in the same way. Analysis of orbital compositions at Γ and M reveals that simple symmetry and overlap arguments depicted previously in Fig. 3 and discussed in the text do give a qualitatively correct description of the bands.

Fig. 5 shows the contributions to the DOS of the two hybrids. We tried in this context not only sp^2 hybrids, 50% s, 50% p, but also different s, p mixing ratios. The most informative results were obtained for ψ_1 being 75% s, 25% p, and ψ_2 25% s, 75% p. These projections are plotted in Fig. 5. ψ_1 is split among two bands: its lower part, at -15 to -20 eV is the contribution to ψ_x, while its upper part at 6 to 9 eV is ψ_y. The distribution of ψ_2 is very different. This level is very much localized in a band between -7 and -10 eV.

The previous discussion has traced the construction of the band structure of the Sn$_3$ part of a layer. But it is not really descriptive of the nature of the
bonding in the layer. To reach a simpler description we note the hypervalent 5-coordination of Sn₅, the resemblance of the square pyramidal units to B₃H₆ [21], and our previous discussion of BaAl₄ [16].

Suppose we begin with a set of four tetrahedral sp³ hybrids at each Sn₅, recognizing its local environment. At the Sn₅, on the other hand, let’s just form two sp hybrids as before, leaving the rest two p orbitals unhybridized. The picture we have so far is drawn in 9 (only two squares shown, labelled “Sn” and “Pd”).

In the “Sn” square or pyramid there will be bonding between the five Sn’s, above the square lattice, in the “Pd” square we expect orbitals below the square, directed toward the Pd which will eventually come there in the next stage of the construction.

What is the nature of the bonding within the “Sn” pyramid? A schematic diagram is indicated in 10. At
Fig. 5. Density of states (DOS) projections of the two sp₃ hybrids in a Sn₃ layer structure. On the left is the hy₁ (75% s, 25% p_x) contribution and on the right, the hy₂ (25% s, 75% p_x) contribution. The dashed line is the total DOS and the dotted line, the integrated hybrid state density.
left are the four symmetry-adapted combinations of the four Sn, sp³ hybrids in the square, at right the Sn₂ orbitals. Three bonding combinations, a₁+e, or σ+π result. The six electrons in these three MO’s hold together the Sn₂ to four Sn₂ atoms. This is electron-deficient multi-center bonding, just as one has in B₅H₉ [21]. In addition we have a non-bonding out-pointing orbital on Sn₂, hy₂, whose presence we have already traced.

Superimposed on this picture of bonding in the “Sn” hollow or pyramid we expect several bands corresponding to Sn₂ hybrids pointing toward the “Pd” hollow. The delocalized orbitals will hardly follow our penchant for localization, so in the two-dimensional Sn₃ network things will be more complicated, delocalized. Still we should see the traces of this localized picture.

A good way to characterize bonding in a periodic network is to examine COOP [22] curves. These are overlap population weighted DOS curves, and they show the average contributions to bonding (in a specified bond) of all the levels in a given energy interval. Such a curve for the Sn₁ layer is shown in Fig. 6. The bonding peaks marked ψᵣ and ψₓ are the main contributions to Sn₁–Sn₂ bonding. There are many states, especially around the Fermi level, which do not contribute to such bonding. These are orbitals pointing toward the Pd sites, which we now will begin to populate.

PdSn₃⁻ Layer Structure

We are now ready for building up a two dimensional layer structure of PdSn₃⁻, as indicated in 11. There are two types of lattice sites: the tetrahedral site within the square lattice and the pyramidal site at the apical positions. The unit cell is drawn in 12. It contains two t-site Sn atoms, which we denote as Snₜ as before; a p-site tin, Snₚ, and a p-site palladium, Pdₚ. A total number of twenty-four electrons is associated with each unit cell. The local environment

Fig. 6. Crystal Orbital Overlap Population (COOP) curve for the Sn₁–Sn₂ bond in a Sn₁ layer. The arrow indicates the Fermi level.
of Sn_p and Pd_p is what we see in 13: a set of square pyramids with their apices pointing alternately up and down. Each Sn_p and Pd_p sits on top of a square pyramid and has a close contact with four basal tins (Sn_r). Later, when forming a three dimensional structure, a Sn_p−Pd_p bond will be introduced and these atoms will eventually be five-coordinate. The picture here is very similar to the Al_4^2− layer structure in the BaAl_4 crystal [16], except that here the downward apex is occupied by a different type of atom.

The similarity between BaAl_4 and BaPdSn_3 can be pushed a little further. If the Pd were taken as neutral and approximately d^10, and if the d electrons of Pd were not participating in the bonding, then PdSn_3^2− is a 4 atom-14 electron unit, just as Al_4^2−. But is it safe to say that the Pd d electrons indeed have little contribution to the local bonding? Density of states projection of the 4d levels, plotted in Fig. 7, gives a definite answer. It is obvious that the energy levels are, to a great degree, localized at a value of ~ −12 eV. Other calculations indicate that this is a common feature present in BaNiSn_3 type structures [23]. There is a small crystal field spliting of the d band, but it is too small to show up on the scale of Fig. 7. Actually the crystal field splitting, as small as it is, is an inverse one, stabilizing d_or [24] relative to the other orbitals. This is a consequence of the Sn orbitals being at higher energy than the metal d set, the reverse of the usual ligand-metal orbital energy ordering.

The essential, quasilocalized features of the bonding are shown in Fig. 8. The left-hand side of Fig. 8 reproduces 10. We will not repeat the argument: there is delocalized multi-center bonding in the “Sn” hollow, using six electrons, plus an out-pointing lone pair on Sn_p. Similar constructions apply to the “Pd” hollow. The only difference now is that the hybrids at Pd are higher in energy, and so are the Pd 5p orbitals. There are still three bonding orbitals (a_1^+, e, σ+π), and in addition one has the relatively non-interacting Pd 4d set and a now empty, down-pointing hybrid at Pd. The total electron count of 24 is now the right one for PdSn_3^2−. Of these 24 electrons, 10 are in the Pd 4d, 12 in Sn−Sn and Sn−Pd delocalized bonding, 2 in the Sn lone pair.

This is a localized picture, highly simplified. On going to the delocalized picture shown schematically at right side of 14, energy levels are broadened into bands. The inter-cell interactions are strong enough to destroy the locally imposed small gap between the highest occupied and the lowest unoccupied levels indicated at left of 14. A partial overlap of these bands should result.

To see whether the above analysis gives a qualitatively correct representation we show here the calculated band structure along two symmetry lines, MI and ΓX, in Fig. 9. There is indeed an overlap between the 12th and 13th band.
Fig. 8. Schematic diagrams of the local interactions in the PdSn$_2$ layer structure. The left-hand side shows the orbital interactions of the an apical Sn with the square lattice, and the right-hand side gives a similar picture for an apical Pd.

Fig. 9. Calculated energy bands for the PdSn$_2$ 2-dimensional layer along two symmetry lines. The overlap between the 12th and the 13th bands is emphasized by the heavy lines.
DOS curves for palladium $5p_t$ and $5p_v$ plotted in Fig. 10 are consistent with the bonding picture in Fig. 8. The two main peaks appearing at about $-7.0 \sim -9.0$ eV and $7.0 \sim 12.0$ eV are the contributions to π ("Pd") and π^* ("Pd") respectively (cf. Fig. 8, right). $\sim 70\%$ of states being in π^* ("Pd") and only $\sim 30\%$ in π ("Pd"). This clearly follows what one would expect to happen in an isolated molecule: the antibonding orbital has more contribution from the atomic orbital of higher energy. It is not surprising to see the same phenomenon exhibited in the DOS projection of tin p_t and p_v, also illustrated in Fig. 10. Around $-10 \sim -11$ eV are now the states contributed to π ("Sn"). They are about $2 \sim 3$ eV lower in energy than the corresponding ones of π ("Pd"). For π^* ("Sn"), the difference is roughly $5 \sim 6$ eV.

Further evidence in support of the argument given in Fig. 8 is to be found in the palladium s_p contribution to the total DOS. This is plotted in Fig. 11. At left is a DOS projection of h^1 (Pd) [25], the hybrid that points toward the base of the pyramid. $\sim 20\%$ of its states go into bonding σ ("Pd") and $\sim 60\%$, into antibonding σ^* ("Pd"). Compared with h^1 (Pd), the DOS curve of h^2 (Pd) looks very different. A narrow band between -4 and -5 eV characterizes the non-bonding behavior of this orbital. Not only this. The density of states projections of a_1, e and b_2 also show agreement with our qualitative considerations outlined above.

The localized bonding pattern of Fig. 8 is confirmed by the COOP curves, Fig. 12. The Sn$_2$ bonding in the PdSn$_3$ layer is nearly identical to that in the Sn$_3$ sublattice described earlier. The Sn$_2$-Pd overlap population also has σ and π peaks, but as Fig. 8 would suggest, these occur at different energies from the Sn-Sn bonding maxima. In addition there is a weak contribution to Sn-Pd bonding from the Pd d band at ~ -12 eV.

Fig. 10. The p_t and p_v contributions (shaded area) to the total density of states (dashed lines): (A) $5p_t$, $5p_v$ of an apical tin atom, (B) $5p_t$, $5p_v$ of an apical palladium atom. Dotted lines are the integrated $5p_t$ and $5p_v$ states.
Fig. 11. The projected density of state of the Pd\textsubscript{p} hybrids. (A) hy\textsubscript{1} (75\% s, 25\% p\textsubscript{p}), (B) hy\textsubscript{2} (25\% s, 75\% p\textsubscript{p}) in the PdSn\textsubscript{3} layer structure. The dashed line is the total DOS and the dotted line, the integrated hybrid states. The Fermi energy is indicated in the figure.

Fig. 12. COOP curves for the PdSn\textsubscript{3}2- two dimensional lattice: (A) Sn\textsubscript{p}–Sn\textsubscript{p} contact, (B) Sn\textsubscript{p}–Pd\textsubscript{p} contact. The arrows indicate the Fermi level.
PdSn₃²⁻ Three Dimensional Structure

At this stage we turn on interaction between layers. All we do is to stack the PdSn₃²⁻ layers. The process is displayed in 15. Each Pd₂ now has a close contact with a Sn₃⁻ atom from another layer. The Pd²—Sn⁻ distance is short (2.636 Å), so a strong interaction between the two is expected. hy₂ (Sn), having its big lobe pointing upwards (positive z-direction), overlap nicely with hy₂ (Pd), the Pd hybrid pointing downwards. What we obtain is a normal two-center, two-electron σ-type bond, 16. Everything else should be little changed because the intralayer interactions remain essentially unchanged. There is going to be some charge transfer, and charge should flow from Sn⁻ to Pd₂ since hy₂ (Sn) was originally filled and hy₂ (Pd) was empty.

We would like to see how well these qualitative considerations check out in a full calculation. Fig. 13 shows projected density of states for hy₂ (Sn) and hy₂ (Pd) [26]. Most of the hy₂ (Sn) states (~70%) go into σ whereas σ* takes up about same amount from hy₂ (Pd). This is what one would expect from 16; the bonding molecular orbital is close in energy to hy₂ (Sn) and should therefore be more Sn-like. hy₂ (Pd), being higher in energy, contributes mainly to σ* antibonding, making the σ* region Pd-like. Note the nice resonance between hy₂ (Pd) and hy₂ (Sn) contributions in the σ band region.

DOS contributions of the other orbitals, namely the Sn, square net orbitals, the Pd d block, the Sn, and Pd π orbitals, are all essentially unchanged upon stacking to the three-dimensional structure.

The band structure of 3-dimensional PdSn₃²⁻ is shown in Fig. 14. No detailed discussion is necessary – the resemblance to the 2-dimensional layer of Fig. 9 is clear. The σ and σ* bands, labelled at Γ and M, are the only new feature, and they cause a minor perturbation of the band structure via some avoided crossings. The overlap between the 12th and 13th bands (bold face) remains. The material should be metallic.

The population analysis shows a flow of 0.35 electrons from Sn to Pd. The relevant COOP curves are drawn in Fig. 15. The Pd—Sn and Sn—Sn curves are nearly unchanged relative to the two-dimensional case. The Pd—Sn COOP curve shows maximal contributions where we have identified the σ and σ* bands. The Fermi level, as usual, comes in a position that maximizes bonding. One interesting aspect of the calculations is that we get a positive overlap population, 0.096, between formally nonbonded tetrahedral site tin atoms. This is to be compared to an overlap population of 0.356 for Sn—Sn. From our experience the positive sign and magnitude of
To summarize: the PdSn$_3^2$ framework is held together by twenty-four electrons per unit cell. 12 of these are involved in multi-centered bonding between basal Sn atoms (Sn$_b$) and the p-site atoms, Sn$_p$ and Pd$_p$. The other two, being used to form a strong σ-type bond, hold the layers together. The ten 4d electrons, on the other hand, contribute very little to any bonding.
Fig. 15. Crystal Orbital Overlap Population curves for the 3D PdSn₃⁻ in the BaPdSn₃ structure. (A) the Pd_p—Sn_p bonding, (B) the Sn_p—Sn_p bonding and, (C) the Pd_p—Sn_p bonding. The Fermi level is indicated by the arrows.
Other BaNiSn$_3$ Type Structures

Listed in Table I are a number of selected compounds with the BaNiSn$_3$ type structure. All have 24 electrons per unit cell. We have calculated the band structures for BaNiSn$_3$ and LaIrSi$_3$ [12, 27] along one or two symmetry lines, but do not present the details here. In general there are great similarities to the PdSn$_3$ electronic structure presented above. There are differences in the extent of band overlap at the Fermi level, and some of these compounds may be semiconductors.

Table I. Some RMA$_3$ structures.

<table>
<thead>
<tr>
<th>RMA$_3$</th>
<th>M$_p$-A$_p$ (Å)</th>
<th>M$_n$-A$_n$ (Å)</th>
<th>A$_p$-A$_n$ (Å)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaNiSn$_3$</td>
<td>2.53(1)</td>
<td>2.62(1)</td>
<td>3.08(1)</td>
<td>[7]</td>
</tr>
<tr>
<td>BaPtSn$_3$</td>
<td>2.56(1)</td>
<td>2.66(1)</td>
<td>3.07(1)</td>
<td>[7]</td>
</tr>
<tr>
<td>SrNiSn$_3$</td>
<td>2.50(1)</td>
<td>2.57(1)</td>
<td>3.07(1)</td>
<td>[7]</td>
</tr>
<tr>
<td>SrPdSn$_3$</td>
<td>2.61(3)</td>
<td>2.66(3)</td>
<td>3.02(1)</td>
<td>[14]</td>
</tr>
<tr>
<td>LaIrSi$_3$</td>
<td>2.398</td>
<td>2.379</td>
<td>2.598</td>
<td>[12, 27]</td>
</tr>
</tbody>
</table>

Appendix

The extended Hückel approach in the tight-binding method [15] was employed in all calculations. Table II lists the parameters used for Sn and Pd. The geometry in BaPdSn$_3$ was taken from the experimental data. A set of 28 or 40 k points was selected in the irreducible wedge in the Brillouin zone [28] for the DOS and COOP calculations.

Table II. Parameters used in the extended Hückel calculations.

<table>
<thead>
<tr>
<th>Orbital</th>
<th>H$_i$ (eV)</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>c_i</th>
<th>c_i^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn s</td>
<td>-16.16</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 p</td>
<td>-8.32</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd 4 d</td>
<td>-12.02</td>
<td>5.98</td>
<td>2.613</td>
<td>0.5535</td>
<td>0.6701</td>
</tr>
<tr>
<td>Sn s</td>
<td>-7.32</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 p</td>
<td>-3.75</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Coefficients used in the double ξ expansion of the d orbitals.

J. L. would especially like to thank Ralph Wheeler, Wolfgang Tremel, and Chong Zheng for many helpful discussions. We are grateful to the National Science Foundation for its support of this work through Research Grant CHE 8406119. We thank Jane Jorgensen and Elisabeth Fields for the drawings.

[23] DOS projections of d orbitals for LaIrSi$_3$ and BaNiSn$_3$ give the same feature.

[24] The orbital is d_{xy} with our choice of coordinates, but corresponds to $d_{x^2-y^2}$ in the conventional octahedral field, where the ligands are placed along the x and y axes.

[25] Here again we have chosen sp3 hybrids with $x \neq 1$. hy_1 is 75% s, 25% p; and hy_2 is 25% s, 75% p$_z$.

[26] Both these hybrids are taken as 25% s, 75% p$_z$ in the projections.
