Methylaminodiphenylborane – Application of 11B, 13C, 14N, 15N NMR

Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2, FRG

Z. Naturforsch. 41b, 59–62 (1986); received July 23/September 13, 1985

BC(pp)π Interactions, NMR Spectra, Rotation about the BN bond

11B, 13C, 14N, 15N NMR is used to study methylaminodiphenylborane (I). Compound I can be regarded as a model compound for studying BN(pp)π interactions, for determining the barrier to rotation about the B–N bond and for the application of natural abundance 15N NMR to boron-nitrogen chemistry. The 13C NMR of I shows a large splitting of the 13C para resonances (in contrast to reports on similar compounds in the literature) as a consequence of hindered rotation about the BN bond. The difference in the 13C para nuclear shielding indicates different mesomeric interactions between the trigonal boron atom and the two phenyl groups.

![Diagram of methylaminodiphenylborane (I)](image)

The presence of BC(pp)π interactions in addition to BN(pp)π bonding in aminophenylboranes is still a matter of debate. Important information pertinent to this problem can be derived from 11B, 13C and 14N, 15N NMR [2]. This note reports 11B, 13C, 14N and 15N NMR data of methylaminodiphenylborane (I):

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(o)</th>
<th>(m)</th>
<th>(p)</th>
<th>NCH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11B</td>
<td>139.5</td>
<td>140.2</td>
<td>133.5</td>
<td>127.5</td>
<td>127.9</td>
</tr>
<tr>
<td>13C</td>
<td>41.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14N</td>
<td>-285.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11B NMR

The 11B chemical shift, δ^{11}B 41.5, does not change between 0 °C to 60 °C, indicating the monomeric nature of I in solution. The comparison with δ^{11}B values for other diphenylboranes [2, 3] suggests significant BN(pp)π interactions.

13C NMR

The 13C NMR spectra of many aminodiphenylboranes, (C$_6$H$_5$)$_2$BNRR' [4–8], show that there is restricted rotation about the BN bond. Although this corroborates the interpretation of the 11B nuclear shielding, the contribution of steric hindrance to the barrier to rotation about the BN-bond remains unde-

fined. Furthermore, it is stated in reference [7] that all compounds studied with R = H and R' = alkyl, Si(CH$_3$)$_3$, N(CH$_3$)$_2$ give rise only to a single 13C para resonance. However, the 13C ortho and 13C meta resonances are always split into two signals. This is surprising because the 13C meta resonances are, in general, very sensitive to mesomeric interactions. These BC(pp)π interactions should be noticeable especially in alkylaminodiphenylboranes such as I where at least one phenyl group (trans to alkyl) experiences a minimum of steric repulsion from the NH site. In the 13C NMR spectra shown in reference [7] an additional 13C para resonance may be hidden underneath the 13C meta resonances. The 13C NMR spectrum of I (Fig. 1) clearly shows two 13C para resonances, one being close to the 13C meta resonances. The value ΔG_{cal} (25 °C) for the barrier to rotation about the BN bond in I can be evaluated to 60.0 ± 1 kJ/M [9]. From the data given [7] ΔG_{cal} (=180 °C) in (C$_6$H$_5$)$_2$BNH tert-C$_6$H$_5$ should be > 90 kJ/M which reflects part of the steric influence upon the energy of activation.

A tentative assignment of the 13C para resonances in I is based on δ^{13}C para for (C$_6$H$_5$)$_2$B–N(CH$_3$)$_2$ (127.9 [4]). This suggests that the 13C para resonance of the phenyl group in cis-position to the NCH$_3$ group is observed at lower frequency (Fig. 1, (p')). The amount of BC(pp)π interactions is determined by the average twist angle of the phenyl groups with the NBC$_2$ plane. It can be assumed that steric hindrance will be greater for the phenyl group in cis-position to the NCH$_3$ group than for the phenyl group in trans-position. Therefore, it is concluded that the deshielding of the 13C para nucleus in the latter results from BC(pp)π interactions.
14N, 15N NMR

Although modern NMR instrumentation enables fast measurement of 14N NMR spectra, widespread application of 14N NMR is hampered owing to efficient quadrupole induced relaxation of the 14N nucleus. Thus, the line widths of 14N resonances increase readily with increasing molecular weight in the case of unsymmetrical charge distribution around the quadrupolar 14N nucleus. This causes loss of fine structure arising from scalar spin-spin coupling and leads to low accuracy of the δ^{14}N values (see Fig. 2). The alternative is natural abundance 15N NMR which has become more and more common in recent years, mainly as a result of various spin-polarization transfer techniques (INEPT [11, 12], DEPT [13]). In the case of aminoboranes the 15N resonances may be severely broadened owing to scalar 15N–11B coupling [14]. 15N–11B spin-spin coupling contributes to transverse relaxation (scalar relaxation of the second kind [15]). Considering the development of transverse 15N

![Fig. 1. 50.3 MHz 13C NMR (1H-decoupled) of methylaminodiphenylborane (1) at $-40\,^\circ\text{C}$ in CDCl$_3$. The assignment of the 13C resonances is based on 1H-coupled spectra (to distinguish 13C$_{ortho}$ and 13C$_{meta}$ on integral intensities in 1H decoupled spectra with NOE suppression (13C$_{para}$)). The very broad single 13C$_{ipso}$ resonance at room temperature is sharpened in a heteronuclear triple resonance experiment 13C(1H, 1B).](image1)

![Fig. 2. 14.4 MHz 14N NMR of methylaminodiphenylborane, 1, at 27–28 °C in CDCl$_3$. The enormous line width (≈1000 Hz) demonstrates the limited application of 14N NMR in this field of chemistry.](image2)
magnetization in the various polarization transfer pulse sequences, it appears that the basic INEPT pulse sequence [11] should give the best results. The quadrupolar relaxation time of the 11B nucleus is fairly short in phenylaminoboranes ($T_{Q(B)} = 1.3$ ms in 1, 10% CDCl$_3$ solution at 27–28 °C). Therefore, $J(^{15}$N11B) is almost completely averaged $(2\pi \cdot J(^{15}$N11B) \cdot T_{Q(B)} < 1$ [15]). Although the 15N NMR spectrum in Fig. 3 shows some residual broadening, it can be recorded within ~2 h using the basic INEPT pulse sequence [11]. The application of refocused INEPT [12] or DEPT [13] requires more spectrometer time owing to less efficient polarization transfer because of the short transverse relaxation time $T_2(^{15}$N).

The δ^{15}N value (−285.7) of 1 falls into the range found for aminodiorganylboranes [16], and is typical for delocalization of the nitrogen lone electron pair [17]. The value $J(^{15}$N1H) (79.5 Hz) in 1 is similar to values found for borazine (79 Hz [18]) or aminodimethylborane (80.0 Hz [19]).

These observations should encourage the application of natural abundance 15N NMR measurements to boron nitrogen compounds, in particular to those of greater molecular weight. The latter, in general, give broad unresolved 11B resonances providing very little information on the structure of the compounds under investigation. However, the rapid quadrupolar relaxation of the 11B nucleus ensures efficient averaging of the scalar coupling $J(^{15}$N11B) which improves the signal to noise ratio in the 15N NMR spectra.

Experimental

All NMR spectra have been recorded in 10 mm o.d. tubes as 10% solutions (weight/volume) in CDCl$_3$ using a BRUKER WP 200 NMR spectrometer equipped with a multinuclear unit. Chemical shifts are given with respect to external BF$_3$-O(C$_2$H$_5$)$_2$ (δ^{11}B), (CH$_3$)$_4$Si (δ^{13}C CDCl$_3$ = 77.0) and 0.1 M CH$_3$NO$_2$ in CDCl$_3$ (δ^{15}N, Ξ_{15}N = 10136719 Hz).

Methylaminodiphenylborane (1) has been prepared according to the literature [20]. Compound 1 is obtained in 45% yield by distillation (b.p. 90–93 °C/10⁻² mm Hg) as a viscous colourless liquid. This turns slowly into a colourless crystalline solid (m.p. 60–63 °C), which becomes pale yellow after several months. The solid dissolves readily in CHCl$_3$ as the monomer 1 (11B NMR, osmometric molecular weight measurement). 1H NMR (200 MHz) in CDCl$_3$ (5%): 1H 2.96 (d, J_{HH} 6.1 Hz, 3H) NCH$_3$; 4.8 (q, breit, 1H) NH; 7.30–7.75 (m, 10H) C$_6$H$_5$.

I am grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for support of this work.