The Molecular Structure of Selenium Dichloride, SeCl₂,
Determined by Gas Electron Diffraction

Liv Fernholt, Arne Haaland*, and Ragnhild Seip
Department of Chemistry, University of Oslo, Box 1033, Blindern, Oslo 3, Norway

Rüdiger Kniep and Lutz Korte
Institut für Anorganische Chemie und Strukturschemie der Universität Düsseldorf,
Universitätsstraße 1, D-4000 Düsseldorf

Molecular Structure, Selenium(II) Chloride, Gas Electron Diffraction

The electron diffraction pattern of the vapor from a sample of SeCl₄ has been recorded
with a reservoir and nozzle temperature of about 175 °C. The gas jet was found to consist
of SeCl₂ (80%) and Cl₂ (20%). The bond distance in SeCl₂ is \(r_a(\text{Se-Cl}) = 2.157(3) \text{ Å} \), the
valence angle \(<\text{ClSeCl} = 99.6(5)° \).

Two of the three known selenium chlorides, Se₂Cl₂ and SeCl₄, are stable in the solid phase but not in the
gas phase, while the third, SeCl₂, is stable in the gas phase but does not appear to exist in the solid
phase [1]: SeCl₂ forms a molecular solid which melts incongruently at about −48 °C [2, 3]. On
evaporation it dissociates partly or not completely to Se(l) and SeCl₂(g). SeCl₄ forms cubane-like tetra-
mers in the solid phase [2, 4]. The melting point (in a closed system) is about 306 °C. On evaporation
it dissociates completely according to

\[\text{SeCl}_4(s) \rightarrow \text{SeCl}_2(g) + \text{Cl}_2(g). \]

The molecular structures of Se₂Cl₂ and tetrameric SeCl₄ have recently been determined by X-ray
crystallography [2-4]. The SeCl₂ molecule has been studied by gas phase Raman spectroscopy [6] and by He(I) photoelectron
spectroscopy [7, 8]. We now report the molecular structure determined by gas electron diffraction.

A sample of SeCl₄ was synthesized as described elsewhere [2]. Electron diffraction of the vapor was
recorded on Balzers Eldigraph KDG-2 with nozzle and reservoir temperatures of about 175 °C. Ex-
posures were made with nozzle-to-plate distances of about 50 and 25 cm. The data were processed by
standard procedures. Six 50 cm plates yielded an average modified molecular intensity curve ex-
tending from \(s = 2.00 \) to 14.75 Å⁻¹ with increment 0.125 Å⁻¹. Four 25 cm plates yielded an average intensity curve extending from \(s = 5.00 \) to 29.00 Å⁻¹

Fig. 1. (Above): Experimental RD curve for the SeCl₂/Cl₂ gas mixture emanating from the nozzle.\nArtificial damping constant \(k = 0.002 \text{ Å}^{-2} \); (Below): difference between the experimental curve and the theoretical curve calculated for best model (Table I).
The bond distance and the root-mean-square vibrational amplitude of the Cl₂ molecule were fixed at the values determined by Shibata, \(r_g = 1.993 \, \text{Å} \) and \(\ell = 0.051 \, \text{Å} \), respectively [11]. The bond distance, valence angle and R.M.S. vibrational amplitudes of SeCl₂ as well as the mole fractions of SeCl₂ and Cl₂ in the gas jet were refined by least-squares calculations on the intensity data with a program originally written by H. M. Seip [12]. The best parameter values are listed in Table I. The estimated standard deviations have been multiplied by a factor of two to compensate for data correlation and expanded to include a scale uncertainty of 0.1%.

Table I. Mole fraction and molecular structure of SeCl₂ in the molecular beam.

<table>
<thead>
<tr>
<th></th>
<th>(r_a/\text{Å})</th>
<th>(\ell/\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi) (SeCl₂) = 0.79(4)</td>
<td>2.157(3)</td>
<td>0.061(3)</td>
</tr>
<tr>
<td>Se–Cl</td>
<td>3.295(13)</td>
<td>0.132(9)</td>
</tr>
<tr>
<td>Cl–Cl</td>
<td>99.6(5)°</td>
<td></td>
</tr>
<tr>
<td>(\chi) (Cl₂) = 0.21(4)</td>
<td>1.993b</td>
<td>0.051b</td>
</tr>
</tbody>
</table>

a Not corrected for shrinkage; b ref. [11].

The low mole fraction of Cl₂ was initially something of a surprise. Refinements on data from single plates indicated, however, that the amount of Cl₂ present in the gas jet decreased in the course of the experiment. We assume that most of the Cl₂ formed escaped before we began to record the scattering pattern.

The bond distance in SeCl₂ is indistinguishable from the terminal Se–Cl bond distances in the SeCl₄ tetramer [2, 4], but significantly shorter than in crystalline Se₂Cl₂ where the mean Se–Cl bond distance is 2.204 Å [3]. At the same time the valence angle in SeCl₂ is significantly smaller than the valence angle at Se in Se₂Cl₂, \(< \text{SeSeCl} = 104.3° \) (mean value). The same differences have been noted between SC₁₂ and S₂Cl₂ [3].

In a very early electron diffraction investigation of the vapor from solid SeCl₄, Lister and Sutton concluded that the SeCl₄ molecule is (distorted) tetrahedral with a (mean) SeCl bond distance of 2.13 ± 0.04 Å [13]. The possibility that SeCl₄ dissociates in the gas phase was not considered. This study, which has found its way into the literature, must be regarded as invalid. A later study by Akishin, Spiridonov and Mishulima concluded that the sample had undergone partial or complete decomposition, most probably to give SeCl₂ and Cl₂. The degree of dissociation could not be determined, however, and the average SeCl bond distance of the “molecules present in the vapor” given as 2.18 ± 0.02 Å [14]. This result, though less accurate, is consistent with ours.

We are grateful to the Norwegian Research Council for Science and the Humanities (NAVF) and to the Fonds der Chemischen Industrie for financial support.