The Molecular Structure of Selenium Dichloride, \(\text{SeCl}_2 \)
Determined by Gas Electron Diffraction

Liv Fernholt, Arne Haaland*, and Ragnhild Seip
Department of Chemistry, University of Oslo, Box 1033, Blindern, Oslo 3, Norway
Rüdiger Kniep and Lutz Korte
Institut für Anorganische Chemie und Strukturchemie der Universität Düsseldorf,
Universitätsstraße 1, D-4000 Düsseldorf

Molecular Structure, Selenium(II) Chloride, Gas Electron Diffraction

The electron diffraction pattern of the vapor from a sample of SeCl\(_4\) has been recorded with a reservoir and nozzle temperature of about 175 °C. The gas jet was found to consist of SeCl\(_2\) (80\%) and Cl\(_2\) (20\%). The bond distance in SeCl\(_2\) is \(r_a(\text{Se-Cl}) = 2.157(3) \AA \), the valence angle \(\angle \text{ClSeCl} = 99.6(5)^\circ \).

Two of the three known selenium chlorides, Se\(_2\)Cl\(_2\) and SeCl\(_4\), are stable in the solid phase but not in the gas phase, while the third, SeCl\(_2\), is stable in the gas phase but does not appear to exist in the solid phase [1]: SeCl\(_2\) forms a molecular solid which melts incongruently at about \(-48 °C \) [2, 3]. On evaporation it dissociates partly or not completely to Se(l) and SeCl\(_2\)(g). SeCl\(_4\) forms cubane-like tetramers in the solid phase [2, 4]. The melting point (in a closed system) is about 306 °C. On evaporation it dissociates completely according to

\[
\text{SeCl}_4(s) \rightarrow \text{SeCl}_2(g) + \text{Cl}_2(g). \quad [5, 6]
\]

The molecular structures of Se\(_2\)Cl\(_2\) and tetrameric SeCl\(_4\) have recently been determined by X-ray crystallography [2-4].

The SeCl\(_2\) molecule has been studied by gas phase Raman spectroscopy [6] and by He(I) photoelectron spectroscopy [7, 8]. We now report the molecular structure determined by gas electron diffraction.

A sample of SeCl\(_4\) was synthesized as described elsewhere [2]. Electron diffraction of the vapor was recorded on Balzers Eldigraph KDG-2 with nozzle and reservoir temperatures of about 175 °C. Exposures were made with nozzle-to-plate distances of about 50 and 25 cm. The data were processed by standard procedures. Six 50 cm plates yielded an average modified molecular intensity curve extending from \(s = 2.00 \) to 14.75 \(\AA^{-1} \) with increment 0.125 \(\AA^{-1} \). Four 25 cm plates yielded an average intensity curve extending from \(s = 5.00 \) to 29.00 \(\AA^{-1} \) with increment 0.25 \(\AA^{-1} \). Atomic scattering factors were calculated from atomic potentials [9] by the partial wave method [10].

An RD curve obtained by Fourier inversion of the experimental intensity is shown in Fig. 1. The composite peak at about \(r = 2.1 \AA \) consists of peaks representing the bond distances Cl-Cl and Se-Cl in Cl\(_2\) and SeCl\(_2\) respectively, the peak at 3.3 \(\AA \) represents the nonbonded Cl⋯Cl distance in SeCl\(_2\). Note that the RD curve contains no peaks in the range 3.8 to 5.0 \(\AA \) indicating the presence of measurable quantities of Se\(_2\)Cl\(_2\) or SeCl\(_4\).

* Reprint requests to Dr. A. Haaland.
0340-5087/83/0900-1072/S 01.00/0

Fig. 1. (Above): Experimental RD curve for the SeCl\(_2\)/Cl\(_2\) gas mixture emanating from the nozzle. Artificial damping constant \(k = 0.002 \AA^2 \); (Below): difference between the experimental curve and the theoretical curve calculated for best model (Table I).
The bond distance and the root-mean-square vibrational amplitude of the Cl₂ molecule were fixed at the values determined by Shibata, \(r_g = 1.993 \) Å and \(\ell = 0.051 \) Å, respectively [11]. The bond distance, valence angle and R.M.S. vibrational amplitudes of SeCl₂ as well as the mole fractions of SeCl₂ and Cl₂ in the gas jet were refined by least-squares calculations on the intensity data with a program originally written by H. M. Seip [12]. The best parameter values are listed in Table I. The estimated standard deviations have been multiplied by a factor of two to compensate for data correlation and expanded to include a scale uncertainty of 0.1%.

Table I. Mole fraction and molecular structure of SeCl₂ in the molecular beam.

<table>
<thead>
<tr>
<th></th>
<th>(r_a / \text{Å})</th>
<th>(\ell / \text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi (\text{SeCl}_2)) = 0.79(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se-Cl</td>
<td>2.157(3)</td>
<td>0.061(3)</td>
</tr>
<tr>
<td>Cl₁Cl₂</td>
<td>3.295(13)</td>
<td>0.132(9)</td>
</tr>
<tr>
<td>(<\text{ClSeCl}^a)</td>
<td>99.6(5)°</td>
<td></td>
</tr>
<tr>
<td>(\chi (\text{Cl}_2)) = 0.21(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl-Cl</td>
<td>1.993^b</td>
<td>0.051^b</td>
</tr>
</tbody>
</table>

- \(a \) Not corrected for shrinkage; \(b \) ref. [11].

The low mole fraction of Cl₂ was initially something of a surprise. Refinements on data from single plates indicated, however, that the amount of Cl₂ present in the gas jet decreased in the course of the experiment. We assume that most of the Cl₂ formed escaped before we began to record the scattering pattern.

The bond distance in SeCl₂ is indistinguishable from the terminal Se–Cl bond distances in the SeCl₄ tetramer [2, 4], but significantly shorter than in crystalline Se₂Cl₂ where the mean Se–Cl bond distance is 2.204 Å [3]. At the same time the valence angle in SeCl₂ is significantly smaller than the valence angle at Se in Se₂Cl₂, \(<\text{SeSeCl} = 104.3° \) (mean value). The same differences have been noted between SC₁₂ and S₂Cl₂ [3].

In a very early electron diffraction investigation of the vapor from solid SeCl₄, Lister and Sutton concluded that the SeCl₄ molecule is (distorted) tetrahedral with a (mean) SeCl bond distance of 2.13 ± 0.04 Å [13]. The possibility that SeCl₄ dissociates in the gas phase was not considered. This study, which has found its way into the literature, must be regarded as invalid. A later study by Akishin, Spiridonov and Mishulima concluded that the sample had undergone partial or complete decomposition, most probably to give SeCl₂ and Cl₂. The degree of dissociation could not be determined, however, and the average SeCl bond distance of the “molecules present in the vapor” given as 2.18 ± 0.02 Å [14]. This result, though less accurate, is consistent with ours.

We are grateful to the Norwegian Research Council for Science and the Humanities (NAVF) and to the Fonds der Chemischen Industrie for financial support.