New Furanoid Diterpenes from Teucrium scordium L.

Georgi Y. Papanov* and Peter Y. Malakov
University of Plovdiv, 4000 Plovdiv, Bulgaria

Teucrium scordium L., Lamiaceae, Clerodane Type, Furanoid Diterpene, 6-Ketoteuscordin
Two new furanoid diterpenes of clerodane type, 6-ketoteuscordin (1) and 6a-hydroxyteuscordin (2) have been isolated from Teucrium scordium var. scordium, Lamiaceae. Their structures and stereochemistry have been determined.

We have recently reported the structure and stereochemistry of a new furanoid diterpene from T. scordium L. [1]. In continuation of the above investigation, we have isolated two new furanoid diterpenes, 6-ketoteuscordin and 6a-hydroxyteuscordin, whose structures and stereochemistry have been accounted for on the basis of the evidence reported below.

6-Ketoteuscordin (1), C20H22O6, m.p. 199–201 °C, [α]D 131 (CH2Cl2; c 0.224). MS: m/e 358 (M+), 178 (base peak), 96, 95, 81. IR (KBr, cm⁻¹): 1780 and 1750 (two γ-lactones), 1710 (ketone), 3140, 1505 and 870 (furan ring). 1H NMR (CD3COCD3, δ): 1.10 (3H, d, J = 7 Hz, s, CH3), 2.40 (1H, dd, J = 12 Hz, β H-7), 3.29 (1H, t, J = 14 Hz, α H-7), 4.49 and 4.70 (2H, qAB, J = 12 Hz, H2-19), 5.98 (1H, t, J = 8 Hz, H-12), 6.50 (1H, m, β-furan proton), 7.62 (2H, m, α-furan protons).

The stereochemistry of the C(9)–C(20) bond of 1 was derived from 1H NMR chemical shift values of the C-7 methylene protons. The considerable paramagnetic shift of the axial H-7 (3.29 ppm) relative to that of the equatorial H-7 (2.40 ppm) may be explained by the anisotropy effects of the lactone CO group. The proximity of the C-20 carbonyl and Hax-7, necessary for this effect to occur, requires the axial orientation of the C(9)–C(20) bond. Furthermore the observed value of the H-7 at the lower field showed unambiguously that the keto group is at C-6 [3].

The stereochemistry at the other chiral centres were deduced by correlation with Teucrin H2 (3), described [3, 4] as a natural clerodane type diterpene occurring in Teucrium hyroscopicum and T. chamaedrys L. Treatment of 3 with chromium trioxide in dry pyridine at room temperature for 24 h gave only 1. Reduction of 1 with sodium borohydride yielded Teuerin E (4), isolated from Teucrium chamaedrys L. [4, 5]. On the other hand when 4 was treated with chromium trioxide afforded 1 again. All compounds were identified by comparison of their m.p., TLC, IR, 1H NMR and mass spectra.

6a-Hydroxyteuscordin (2), C22H24O7, m.p. 259–261 °C, [α]D 59.4 (CH3COCH3; c 0.183). Its MS is quite similar to the spectra of 1 and it has the same M+ (m/e 358). IR (KBr, cm⁻¹): 3420 (OH), 1750 and 1740 (two γ-lactones), 1600 (double bond), 3135, 1505 and 875 (furan ring). 1H NMR (CD3COCD3, δ): 0.98 (3H, d, J = 7 Hz, s, CH3), 2.32 (1H, d, J = 12 Hz, H-11), 3.82 (1H, dd, J = 4 and 13 Hz, H-6), 4.10 and 5.18 (2H, qAB, J = 12 Hz, H2-19), 5.45 (1H, t, J = 8 Hz, H-12), 6.70 (1H, dd, J = 3 and 7 Hz, H-3), 6.46 (1H, m, β-furan proton), 7.60 (2H, m, α-furan protons).

Acetylation of 6a-hydroxyteuscordin gave a monoacetae (5), C22H26O7, m.p. 240–242 °C. The spectroscopic properties of 5 revealed the presence of an ester (CD3COCD3, δ): 1.86 (3H, s, COOMe) and νmax (KBr): 1725 and 1750 cm⁻¹. The secondary nature of the hydroxyl group in 2 is proved by shifting a double doublet from 3.82 to 4.78 (1H, J = 4 and 13 Hz, H-6) after acetylation. According to the 1H–1H couplings, the H-6 and 5 is axial, whereas the orientation of OH and COOMe groups are equatorial. When treated with chromium trioxide as above for 30 h, 6a-hydroxyteuscordin gave only teuscordin (6) [1], which was characterized by comparison of the m.p., TLC, IR, 1H NMR and mass spectra. In this way the structure and stereochemistry of 2 was proved.

* Reprint requests to Dr. G. Papanov.
0340-5087/81/100-0112-01.00/0
Experimental

The melting points are uncorrected and have been determined with a Kofler microhostage apparatus. 1H NMR spectra were obtained on a JEOL PS-100 instrument at 100 MHz. Kieselgel 0.05–0.2 mm (Merck) was used for column chromatography. Plates coated with silica gel G nach Stahl (Merck) were used for TLC.

Isolation of 1 and 2

The CHCl₃ extract (18 g) was passed over silica gel column. Elution with CHCl₃–MeOH (99.5:0.5) yielded 1 (200 mg). After recrystallization from acetone–ether colourless crystals were obtained. Further elution with CHCl₃–MeOH (99.0:1.0) leads to the isolation of 2 (600 mg) in the form of colourless crystals, which were recrystallized from acetone–dichlormethane.

Sodium borohydride reduction of 1 to 4

To a solution of 1 (70 mg) in methanol (7 ml) was added sodium borohydride (50 mg), and the mixture was stirred for 1 h at room temperature. The mixture was treated with water and extracted with chloroform. The crude crystalline product (60 mg) obtained by the usual treatment of the extract was recrystallization from acetone–ether to afford pure crystals (55 mg), which were identical with the authentic sample of 4 (mixed m.p., TLC and IR; 1H NMR).

Oxidation of 4 to 1

To a solution of 4 (200 mg) in pyridine (10 ml) was treated with chromium trioxide (300 mg) at room temperature for 24 h. The solution was poured into water and the organic product recovered in chloroform. The extract was washed (aqueous acetic acid, sodium hydrogen carbonate solution, water) and dried. Evaporation of the solvent gave the 6-ketotesecord (180 mg), which crystallized from acetone–dichlormethane as colourless prisms, which were identical with the authentic sample of 1 (mixed m.p., TLC, IR, and 1H NMR).

Treatment of 3 (200 mg) under identical conditions afforded the same product (1), which was identified by m.p., TLC, IR and 1H NMR.

Acetylation of 2

The usual acetylation of 2 (100 mg) with acetic anhydride (1.5 ml) and pyridine (3–5 drops) yielded crude acetate (85 mg), which was recrystallized from chloroform–ether to give pure acetate (75 mg), v_max 3140, 1600, 1500, 870 (furan ring), 1735, 1250 (ester group), 1765, 1745 (two γ-lactones) and 1660 cm⁻¹ (double bond), δ 1.05 (3H, d, J = 7 Hz, s. CH₃), 1.86 (3H, s, COOMe), 3.88 and 4.68 (each 1H, q AB, J = 12 Hz, H₂-19), 4.78 (1H, J = 4 and 13 Hz, H-6), 5.48 (1H, t, J = 8 Hz, H-12), 6.42 (1H, m, β-furan proton), 6.84 (1H, dd, J = 3 and 7 Hz, H-3) and 7.60 (2H, m, α-furan protons).

Oxidation of 2 to 6

Treatment of 2 (110 mg) in dry pyridine (6 ml) with chromium trioxide (200 mg) as usual afforded crude crystals (80 mg), which on recrystallization from acetone–ether yielded 6.