Synthesis of Hexahydroindazole, Tetrahydro-[pyrimidoquinazolinone, benzodioxidazolone] Derivatives and Anils from Diethyl 1,4-Cyclohexanedione-2,5-dicarboxylate

El-Sayed Afsah, Fathy A. Amer*, Mohamed A. Metwally, and Mohamed T. El-Zimaity
Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
Z. Naturforsch. 35 b, 1310–1312 (1980); received February 8/April 10, 1980

Indazolones, Isoxazolones, Quinazolinones, Synthesis

Treatment of diethyl 1,4-cyclohexanedione-2,5-dicarboxylate (1) with hydrazine in glacial acetic acid afforded the diazo bicyclooctadinedicarboxylate (2) and the azine (3). On the other hand, condensation of 1 with benzenesulphonylhydrazide in ethanolic solution gave the indazole derivative (4). Interaction of 1 with urea or hydroxylamine afforded the tetrahydropropyrimidoquinazolinone (5) and the tetrahydrobenzodioxide-isoxazolone (6), respectively. Treatment of 1 with aniline gave the mono-anil (7) which, when subjected to Japp-Klingemann reaction with p-anisidine gave the dihydrazonoanil (8) and their condensation with benzidine in acetic acid gave the hydrazonoketoester (9). On the other hand condensation of 7 with hydrazine hydrate in ethanolic solution afforded the azobis (5-anilinoterephthalate) (10) and the hexahydrobenzodipyrazolone (11).

Based on our recent work [1, 2] anticipated the main product in the condensation of 1 with hydrazine in acetic acid [3] would be 3a,4,5,6,7,8-hexahydro-2,6-bis(acetyl)benzo[1,2-C:4,5-C]-dipyrazole-3,7-dione [1]; but diethyl-2,3-diazabicyclo[2,2,2]octa-(7),4-diene-5,7-dicarboxylate (2) and diethyl 2,5-dioxo-1,4-cyclohexanedicarboxylate-2,2-azine (3) were the only products obtained. The IR spectrum of 2 showed absorption bands at 1685 (CO ester) and 3000 cm⁻¹ (NH). The IR spectrum of 3 showed absorption bands at 1700 (CO ester), 3000 cm⁻¹ (NH), 1650 cm⁻¹ (CO ketone) and 1585 cm⁻¹ (C=N).

Treatment of 1 with one mole of benzenesulphonylhydrazide afforded ethyl 3,5a,4,5,6,7-hexahydro-4,5-dioxo-2-phenylsulphonyl-2 H-indazole-6-carboxylate (4). The IR spectrum showed the regular absorption bands of the pyrazole moiety. Reaction of 1 with urea in ethanolic sodium ethoxide solution afforded 4a,5,9a,10-tetrahydro-4-phenyliminocyclohexanone-2,5-dicarboxylate (7). The IR spectrum showed well-defined absorption bands attributable to the carbonyl of the ester (1680 cm⁻¹), endocyclic carbonyl (1640 cm⁻¹) and C=N (1600 cm⁻¹).

* Reprint requests to Dr. F. A. Amer.
Present address: Department of Chemistry, Faculty of Science, King Abdul Aziz University, P. O. Box 1540, Jeddah, Saudi Arabia.
0340–5087/80/1000–1310/$ 01.00/0

Anil [4]. Thus, condensation of 1 with one mole aniline in acetic acid afforded diethyl 4-phenyliminocyclohexanone-2,5-dicarboxylate (7). The IR spectrum of 7 showed well-defined absorption bands attributable to the carbonyl of the ester (1680 cm⁻¹), endocyclic carbonyl (1640 cm⁻¹) and C=N (1600 cm⁻¹).

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Enthalt der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt; um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.
Table I. Physical data of compounds 2-10.

<table>
<thead>
<tr>
<th>Compound</th>
<th>m.p. [°C]</th>
<th>Yield [%]</th>
<th>Carbon found</th>
<th>Hydrogen found</th>
<th>Nitrogen found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{12}H_{16}O_{2}N_{2} (2)</td>
<td>111</td>
<td>90</td>
<td>57.20</td>
<td>6.2</td>
<td>11.1</td>
</tr>
<tr>
<td>C_{21}H_{22}O_{10}N_{2} (3)</td>
<td>153</td>
<td>70</td>
<td>56.5</td>
<td>6.2</td>
<td>6.34</td>
</tr>
<tr>
<td>C_{16}H_{24}N_{4}O_{8}S* (4)</td>
<td>108</td>
<td>65</td>
<td>52.7</td>
<td>4.2</td>
<td>7.68</td>
</tr>
<tr>
<td>C_{15}H_{20}N_{4}O_{4} (5)</td>
<td>360</td>
<td>80</td>
<td>48.5</td>
<td>3.1</td>
<td>14.3</td>
</tr>
<tr>
<td>C_{24}H_{20}N_{4}O_{8} (6)</td>
<td>360</td>
<td>60</td>
<td>49.19</td>
<td>3.2</td>
<td>14.3</td>
</tr>
<tr>
<td>C_{15}H_{17}N_{5}O_{4} (7)</td>
<td>119</td>
<td>75</td>
<td>65.3</td>
<td>6.2</td>
<td>4.22</td>
</tr>
<tr>
<td>C_{26}H_{22}N_{5}O_{3} (8)</td>
<td>121</td>
<td>45</td>
<td>68.6</td>
<td>5.6</td>
<td>15.38</td>
</tr>
<tr>
<td>C_{36}H_{40}N_{2}O_{10} (9)</td>
<td>175</td>
<td>40</td>
<td>65.25</td>
<td>6.2</td>
<td>41.5</td>
</tr>
<tr>
<td>C_{26}H_{52}N_{4}O_{8} (10)</td>
<td>151</td>
<td>30</td>
<td>65.2</td>
<td>5.71</td>
<td>8.46</td>
</tr>
</tbody>
</table>

* Found: S, 8.9%; Required: S, 8.8%.

Treatment of 7 with two moles of \(p \)-anisyl-diazonium chloride gave 5-(phenylmino)-1,2,4-cyclohexanetione-1,4-bis-(\(p \)-methoxyphenyl)hydrazone, which revealed endocyclic carbonyl absorption band at 1690 cm\(^{-1}\), \(\text{C} = \text{O} \), \(\text{C} = \text{N} \) at 1600 cm\(^{-1}\) and \(\text{N-H} \) stretching at 3350 cm\(^{-1}\).

Treatment of 7 with benzidine in acetic acid afforded 9. The formation of 9 finds support from (a) correct analytical data, (b) the IR spectrum and (c) the work of Yokoyama et al. [5] that on the interaction of 1,4-bis(ethoxycarbonyl)-2,5-diamino-1,4-cyclohexadiene and aqueous acetic acid 1 is formed.

![Chemical structures](attachment:structures.png)

Condensation of 7 with hydrazine hydrate in ethanolic solution gave tetraethyl 2,2-azobis(5-anilinoterephthalate) (10) and 2,3a,4,5,6,7-hexahydro-3,5-dioxo-2-phenyl-diazirine-4a,5,9a,10-tetrahydropyrimidof4,5-g/quinazoline-2,4,7,9(3 H,8 H)-tetrone (5). It was prepared by the above procedure using two moles of hydrate, to give compound 3 as a brown solid crystals.

Experimental

Melting point (uncorrected) were determined on Gallenkamp electric melting point apparatus. Infrared spectra were recorded on KBr discs using a Unicam SP 2000 Infrared Spectrophotometer.

Diethyl-1,4-cyclohexanone-2,5-dicarboxylate (1)

Compound 1 was prepared according to the procedure of Moore [7]: yield 80%, m.p. 127–128 °C.

Diethyl-2,3-diazabicyclo[2,2,2]octa-1(7),4-diene-5,7-dicarboxylate 2 (Table I)

A mixture of 1 (0.02 mole) and hydrazine hydrate (0.01 mole) in 50 ml glacial acetic acid was heated under reflux condenser for 3 h, left to stand overnight. The solid product that separated was filtered off and recrystallized from ethanol to give compound 2 as a brown-red solid crystals.

Diethyl-1,5-diozo-1,4-cyclohexanedicarboxylate-2,2-azine (3) (Table I)

It was prepared by the above procedure using two moles of hydrate, to give compound 3 as a brown solid crystals.

Ethyl-3a,4,5,6,7-hexahydr-3,5-diozo-2-phenylsulphonyl-2 H-indazole-6-carboxylate (4) (Table I)

A mixture of 1 (0.01 mole) and benzenesulphonyldrazide (0.01 mole) in 30 ml ethanol, was heated under reflux for 4 h. The solid product that separated on cooling was filtered off and recrystallized from ethanol to give compound 4 as a pale-yellow powder.
Method (B): A mixture of the thio compound [1] (0.01 mole) and monochloreacetic acid (0.02 mole) in 100 ml of water, was refluxed, for 2 h. The solid product that separated was acidified by dissolving in 20 ml (10% sodium hydroxide), and reprecipitated with dilute hydrochloric acid, filtered off, washed with boiling ethanol to give compound 5.

3a,4,7a,8-Tetrahydro-3H,7H-benzo[1,2-C:4,5-C]diisoxazole-3,7-dione (6) (Table I)

A mixture of 1 (0.01 mole) and hydroxylamine hydrochloride (0.021 mole) in 50 ml pyridine, was refluxed for 6 h, left to cool, filtered. The solid product was washed with water several times, and crystallized from acetic acid to give compound 6 as deep-brown powder.

Diethyl-4-phenylimino-1-cyclohexanone-2,5-dicarboxylate (7) (Table I)

In 50 ml hot acetic acid (b.p. 70–90 °C) a mixture of 1 (0.02 mole) and aniline (0.01 mole) was heated for 1 h. The solid product obtained on cooling, was crystallized from ethanol to give compound 7 as a reddish solid crystals.

5-(Phenylimino)-1,2,4-cyclohexanetrione-1,4-bis-[[p-methoxyphenyl]hydrazone] (8) (Table I)

To (0.01 mole) of 7, sodium hydroxide (50 ml) (2.5%) was added, left to stand at zero for 24 h. The reaction mixture was diluted with (50 ml) of water, and p-anisyldiazonium chloride (0.02 mole) was added. After the complete addition of the diazonium salt, the pH of the medium was adjusted at 7–8, and left to stand for 12 h at 5 °C. The solid product that separated was filtered, crystallized from ethanol to give compound 8 as a deep-red solid crystals.

Condensation of 7 with benzidine: formation of 9 (Table I)

A mixture of 7 (0.01 mole) and benzidine (0.01 mole) in acetic acid 30 ml was heated at (70–90 °C) for 1 h, left to cool. The solid product that separated was crystallized from acetic acid to give compound 9 as a deep-red solid crystals.

Tetraethyl-2,2-azobis(5-aminoterephthalate) (10) (Table I) and 2,3a,4,6,7a,8-hexahydrobenzo-[1,2-C:4,5-C]dipyrazole-3,7-dione (11)

Hydrazine hydrate (0.012 mole) and 7 (0.01 mole) in 30 ml ethanol was refluxed for 4 h, left to cool. The solid product that separated was filtered off and crystallized from methanol to give compound 10 as a red solid crystals, while the insoluble material was washed several times with boiling ethanol and proved to be 11 (m.p. and mixed m.p.).