Reinvestigation of the Behaviour of Benzal-anils towards the Action of Potassium Cyanide

Ibrahim I. Abd El Gawad*, Abd El-Hammid Harhash+, and Mohamad, M. M. Abou El-Zahab
Chemistry Department, Faculty of Science, Mansoura University, and +Cairo University, Giza, Egypt
Z. Naturforsch. 35b, 712–714 (1980); received January 7, 1980

Benzal-anils, Addition Reaction, 4-Imidazolidinone, Ring Closure

Reinvestigation of the behaviour of benzal-anils (1) towards the action of potassium cyanide was found to give a mixture of 4-imidazolidinone (6) and 4-imidazolone (7). It was also obtained by benzaldehyde addition to α-arylmino-α-phenylacetanilide (7) or by condensation of benzaldehyde with α-arylmino-α-phenylacetamide (8). The partial conversion of 6 and 7 to each other was discussed.

It has been reported [1] that the reaction of benzal-anil (1) with potassium cyanide in acetic acid afford α-phenylamino-α-phenylacetanitrite (2), whereas in ethanol afford three products, two isomeric structure (3) beside an acid (4) [2]. The structure of the isomeric products 3 has been questioned by Davis and Levy [3], who assumed that the compounds were probably 5-imino-oxazolidine (5) and the 4-imidazolidinone (6a).

Recently, the reaction of salicyldiene-anils with potassium cyanide in ethanol was found to give the salicyldiene derivatives of 2-amino-3-arylamino-benzofuran [4], and not as previously reported metaxazole derivatives [5].

The above contradiction in literature [2-5] prompted us to reinvestigate the behaviour of benzal-anils (1a-c) towards the action of potassium cyanide in ethanol. On treatment benzalaniline (1a) with potassium cyanide in ethanol, only two products, of melting points comparable to those isomers previously isolated [2, 3] were obtained. The IR spectrum of the lower m.p. product agrees well with the structure 6a which showed absorption bands characteristic for C = O, and NH groups. However, the IR spectrum of the higher m.p. product showed absorption bands characteristic for C = O, and C = N groups and did not reveal NH absorption which excludes the possibility of the iminooxazolidine (5). The mass spectra of the two products showed identical fragmentation patterns and molecular ions m/e 314 and 312, respectively. The fragmentation patterns of product 7a showed molecular ion (M+), at 312) and probably it takes place via four routes.

The two products are therefore given the 4-imidazolidinone (6), and the corresponding oxidised product 4 imidazolone (7a) structures, respectively. Similarly, the benzal-anils (1b, c) afforded the imidazolidinones (6a-c) and the imidazolones (7b, e) when treated with potassium cyanide under the same conditions.
The mechanistic pathway by which 6a-e is obtained (cf. Scheme B) was confirmed by either benzaldehyde addition to a-arylamino-a-phenyl acetonitrile (2a-e) or by the condensation of benzaldehyde with a-anilino-a-phenylacetamide (8), obtained from the hydrolysis of 2.

The partial conversion of 6 into 7 is probably due to autooxidation, since 6a afforded 7a by refluxing in ethanol or by air oxidation. Moreover, reduction of 7a with sodium amalgam afforded 6a.

Experimental

Analytical data were determined by the Microanalytical Unit Cairo University. Infrared spectra were recorded on a SP 1000 Pye-Unicam spectrophotometer. Mass spectrum were also recorded on Varian MAT. CH-5 DF. All the melting points are uncorrected.

4-Imidazolidinones (6a-c) and 2-imidazolin-4-ones (7a-c)

A) Reaction of benzal anils (1) with potassium cyanide in ethanol

A mixture of benza 9

laromatic amines (1a-c) (0.2 mole), potassium cyanide (0.2 mole) in ethanol (300 ml) was heated under reflux for 2 h. The reaction mixture was cooled. The solid product that separated was collected by filtration. Recrystallisation of the product from ethanol gave 1-aryl-2,5-diphenyl-2-imidazolin-4-ones (7a-c) as colourless crystals. The results are given in Table I.

Infrared measurements showed stretching frequencies at 1720, and 1635 cm⁻¹ characteristic for C=O, and C=N groups respectively. Chilling the mother liquer in ice gave a second solid. The crystal that separated were collected by filtration, and recrystallised from ethanol to give 1-aryl-2,5-diphenyl-4-imidazolidinones (6a-c). The results are given in Table II.

Infrared measurements showed stretching frequencies at 1720, and 3350 cm⁻¹ characteristic for C=O, and NH groups respectively.

B) Reaction of a-arylamino-a-phenylacetonitriles (2a-c) with benzaldehyde

A mixture of a-arylamino-a-phenylacetonitriles (2a) [1, 6, 7] (0.1 mole), benzaldehyde (0.15 mole), and potassium hydroxide (10 g) in ethanol (500 ml) was heated under reflux for 2 h. The reaction mixture was poured into water. The solid product that

Table I. 1-Aryl-2,5-diphenyl-2-imidazolin-4-ones (7a-c).

<table>
<thead>
<tr>
<th>Compound</th>
<th>m.p. [°C]</th>
<th>Yield [%]</th>
<th>Formula (mol. wt)</th>
<th>Carbon [%] Found</th>
<th>Caled</th>
<th>Hydrogen [%] Found</th>
<th>Caled</th>
<th>Nitrogen [%] Found</th>
<th>Caled</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>255</td>
<td>41</td>
<td>C₂₁H₁₈N₅O (312.38)</td>
<td>80.8</td>
<td>80.77</td>
<td>5.2</td>
<td>5.1</td>
<td>9.2</td>
<td>9.0</td>
</tr>
<tr>
<td>7b</td>
<td>244</td>
<td>38</td>
<td>C₂₂H₂₀N₅O (326.4)</td>
<td>80.1</td>
<td>80.5</td>
<td>6.2</td>
<td>6.1</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>7c</td>
<td>250</td>
<td>39</td>
<td>C₂₂H₂₀N₅O (326.4)</td>
<td>80.6</td>
<td>80.5</td>
<td>6.0</td>
<td>6.1</td>
<td>8.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table II. 1-Aryl-2,5-diphenyl-4-imidazolidinones (6a-c).

<table>
<thead>
<tr>
<th>Compound</th>
<th>m.p. [°C]</th>
<th>Yield [%]</th>
<th>Formula (mol. wt)</th>
<th>Carbon [%] Found</th>
<th>Caled</th>
<th>Hydrogen [%] Found</th>
<th>Caled</th>
<th>Nitrogen [%] Found</th>
<th>Caled</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>209</td>
<td>40</td>
<td>C₂₁H₁₈N₅O (314.39)</td>
<td>79.7</td>
<td>80.2</td>
<td>5.9</td>
<td>5.7</td>
<td>9.0</td>
<td>8.9</td>
</tr>
<tr>
<td>6b</td>
<td>207</td>
<td>38</td>
<td>C₂₂H₂₀N₅O (328.42)</td>
<td>80.6</td>
<td>80.48</td>
<td>6.3</td>
<td>6.1</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>6c</td>
<td>223</td>
<td>37</td>
<td>C₂₂H₂₀N₅O (328.42)</td>
<td>80.3</td>
<td>80.48</td>
<td>6.1</td>
<td>6.1</td>
<td>8.2</td>
<td>8.5</td>
</tr>
</tbody>
</table>
separated was filtered and recrystallised from ethanol to give 1-aryl-2,5-diphenyl-2-imidazolin-4-ones (7a–e) as colourless crystals (cf. Table I).

The mother liquor was chilled in ice and the crystals that separated were filtered, and recrystallised from ethanol to give 1-aryl-2,5-diphenyl-4-imidazolidinones (6a–e) (cf. Table II).

Preparation of α-anilino-α-phenylacetamide (8)

A mixture of α-phenylamino-α-phenylacetonitrile (2a) (2 g) and concentrated sulphuric acid (50%, 20 ml) was heated to 80–90 °C, for 30 min. The reaction mixture was cooled and the solid product formed was collected. Recrystallisation from ethanol gave α-anilino-α-phenylacetamide (8); m.p. 73 °C, yield 90%.

Analysis for C14H14N2O

Calcd C 74.31 H 6.24,
Found C 75.1 H 6.2.

Action of α-anilino-α-phenylacetamide (8) with benzaldehyde

A mixture of α-anilino-α-phenylacetamide (8) (0.01 mole), and potassium hydroxide (0.5 g) in ethanol (20 ml) was heated under reflux for 3 h. The reaction mixture was cooled and the solid product formed was collected. Recrystallisation from ethanol gave 4-imidazolidinone (6a) m.p. 209 °C, yield 83% (mixed melting point with an authentic specimen undepressed).

Conversion from 6a to 7a

Compound 6a (1.0 g) was heated under reflux in ethanol (30 ml) for 8 h. The reaction was cooled by filtration. Recrystallisation from ethanol gave 7a. Characterised by m.p. and m.m.p., yield 71%.

Action of sodium amalgam 2-imidazolin-4-one (7a)

1 g sodium amalgam was added in small portions to a suspension of 2-imidazolin-4-one (7a) (1.0 g) in ethanol (100 ml). The reaction mixture was refluxed for 2 h and set aside overnight at room temperature. The resulting solid product that separated was recrystallised from ethanol to give 1,2,5-triphenyl-4-imidazolidinone (6a) as colourless crystals (mixed melting point with an authentic specimen undepressed).