The Nature of Zolon Red

A. M. Qureshi and A. N. Patel

Department of Chemistry, University of Nigeria, Nsukka, Nigeria

Z. Naturforsch. 33b, 450–453 (1978); received November 28, 1977

Pyrazolone Dye, Zolon Red

Zolon red is an acid dye obtained in the enol form as the stable condensation product of glutaconic aldehyde with two molecules of 1-phenyl-3-methylpyrazol-5-one. Silver(I) replaces the hydroxylhydrogen of the dye to give deep blue precipitate of silver-zolon red compound.

Introduction

Pyridine and pyrazolone reagents had long been used for the detection and estimation of micro amounts of cyanides and ammonia [1–3]. The procedure involves the production of a blue dye by the interaction of pyridine and pyrazolone in the presence of chloramine T and sodium cyanide. Initially glutaconic aldehyde is formed by the opening of pyridine ring of pyridinium cyanide chloride which reacts with two molecules of 1-phenyl-3-methylpyrazol-5-one to give a blue dye which obeys the Beer-Lambert Law. The solution of the blue dye known as zolon blue was found to be unstable and could be converted to a red dye by boiling for short period in aqueous alkali [4]. The red dye to which the name zolon red was given forms coloured precipitates not only with silver(I), mercury(II) and copper(I) [4] but also with mercury(I) and palladium(II). Analytical application of zolon red as a gravimetric, spectrophotometric and extracting reagent for silver have been investigated [5–6]. The structure was assigned to zolon red [7] which represents the keto form of the condensation product of glutaconic aldehyde with two molecules of 1-phenyl-3-methylpyrazol-5-one. This work describes the nature of zolon red in detail and provides evidences in favour of enol form of the structure 4.

Experimental

Preparation of zolon blue

9.0 g of 1-phenyl-3-methylpyrazol-5-one was mixed with 2.0 ml pyridine to form a paste and then diluted with a solution of 1.25 g sodium cyanide in 125 ml water. The suspension so produced was treated with 7.0 g chloramine T in 125 ml water dropwise and with constant stirring. A red colour was produced which immediately turned to blue paste. The stirring was continued for 20–30 min until the test made by placing a drop of the reaction mixture on filter paper gave a blue spot. However, due to unstability of the blue dye a trace of red ring might be observed around the central blue spot. The blue dye so obtained smelled like pyridine and was soluble in water. It was recrystallised with acetone and dried over phosphorus pentoxide.

Analysis for C$_8$H$_8$N$_2$O$_2$

Calcd C 73.17 H 5.37 N 13.65,
Found C 72.68 H 5.36 N 14.09.

Preparation of zolon red

First the blue dye was prepared, as described above, filtered and washed with 50 ml water. The dye was transferred into a beaker and a paste was made with a minimum amount of water. Then a solution of 10 g anhydrous sodium carbonate in 125 ml water was added and the mixture was boiled. The colour changed from blue to purple to red. The boiling was continued until a drop of the reaction
mixture on filter paper gave a red orange spot. A
thick red product was obtained on cooling which
was filtered with suction and washed twice with 50 ml
water. The red compound was dissolved in 300 ml
water and reprecipitated by adding a slight excess
of 10% hydrochloric acid. The red dye was filtered
and washed well with water. It was recrystallised
with methanol and acetone and dried over phos-
phorus pentoxide. Yield 2.50 g; m.p. 212 °C (decomposes to a black mass).

Analysis for C_{25}H_{22}N_{4}O_{2}

Calcd C 73.17 H 5.37 N 13.65,
Found C 72.87 H 5.36 N 13.85.

Molecular weight

Molecular weight of zolon red in methanol was
determined on Hitachi Perkin-Elmer Model 115
Molecular Weight Apparatus. Benzil (molecular
weight 210.23) was used for calibration. Molecular
weight found 820.20, calculated for C_{25}H_{22}N_{4}O_{2}
410.0.

Stoichiometry of reaction of zolon red with silver(I)

Three samples of 25 ml 10^{-2} M, 2.5 \times 10^{-4} moles,
of silver nitrate were buffered with 0.1 M sodium
acetate and treated with 0.0513, 0.1026 and 0.2050 g
of zolon red in minimum ethanol to give silver(I):
zolon red ratio of 1:0.5, 1:1 and 1:2, respectively.
The mixture was shaken, allowed to stand for
30 min in the dark and then filtered. The precipitates
were washed well with water. Excess of silver(I)
was determined in the filtrates and washings by
cyanide method [5]. About half of the unreacted
silver, 1.26 \times 10^{-4} moles, were present in the filtrate
containing, silver(I): zolon red ratio 1:0.5. No silver
was detected in the other two samples.

Analysis of solid silver-zolon red compound

0.02336 g of solid silver-zolon red compound was
dissolved in concentrated nitric acid and evaporated
to dryness. The residue was treated with water,
filtered and washed. Filtrate and washings were
mixed with 25 ml 0.104 M KCN and back titrated
the excess of cyanide with 0.05 M standard silver
nitrate solution. It required 25.10 ml of silver
nitrate. Amount of silver in silver-zolon red com-
 pound was calculated.

Silver calculated for AgC_{25}H_{31}N_{4}O_{2} 20.87, found
20.67.

Potentiometric titrations

25 ml of 10^{-3} M portions of zolon red in ethanol were
titrated potentiometrically against 10^{-2} M
NaOH and 10^{-3} M AgNO_{3} solutions using D-812
Weilheim direct reading pH meter.

Spectroscopic studies

1. NMR spectra were recorded on Varian T-60
NMR Spectrometer. Solutions were prepared in
deuterated, d_{4}-dimethyl sulfoxide. TMS was used
as standard. All chemical shifts are reported in \delta
values.

2. Infrared spectra of zolon blue, zolon red and
silver-zolon red in Nujol mull were obtained with
Perkin-Elmer 257 Infrared Spectrophotometer.

3. Electronic absorption spectra of zolon blue,
zolon red and silver-zolon red in ethanol were taken
on Unicam SP 500 Spectrophotometer.

Discussion

The blue and red dye have identical molecular
formulas and the two isomers could be represented
by the four most likely tautomeric forms as shown in
Fig. 1.

Zolon Blue, even in vacuum and in the dark,
slowly changes to red. The red dye, therefore, seems
to be the most stable form of zolon blue-zolon red
systems. The red dye decomposes to a black mass
at its melting point (212 °C). It is sparingly soluble in
water, chloroform and carbon tetrachloride but
readily dissolves in alcohols, acetone, ether and
dimethyl sulfoxide. 98 mg zolon red in 100 ml
ethanol give a saturated solution of orange colour.
Zolon red forms a dimer in methanol and might be
in other solvents perhaps through hydrogen bond
which results in a molecular weight (820.20) twice
that expected (410.0) for C_{25}H_{22}N_{4}O_{2}.

Potentiometric titration of the red dye with
sodium hydroxide has indicated zolon red, which
would be referred as HZR, is a weak acid with a
single dissociable hydrogen ion. It has a pK_{a} value
3.80 as found by spectrophotometric determination.
Silver(I) is not completely precipitated by HZR
unless sodium acetate buffer is used. Stoichiometry
of reaction of HZR with silver(I) buffered with
sodium acetate indicated the formation of a deep
blue, black when dry, 1:1 species which dissolves in
alcohols and acids. The analysis of silver in the dried
product has confirmed the stoichiometry of the
reaction and formation of silver-zolon red in the
ratio 1:1 [7].

The pH 3.90 of zolon red slowly dropped when
25 ml 10^{-3} M solution was titrated potentiometrically
with 10^{-2} M aqueous silver nitrate. The pH
became constant (pH 2.20) after 2.70 ml silver(I)
had been added. This observation supports the view
that zolon red is an acid which dissociates and forms
insoluble compound with silver(I) according to the
following reactions.

\[
\text{HZR} \rightleftharpoons \text{H}^{+} + \text{ZR}^{-}
\]

\[
\text{Ag}^{+} + \text{ZR}^{-} \rightleftharpoons \text{AgZR}
\]
Further the solubility of silver-zolon red compound in acids and incomplete precipitation of silver(I) unless sodium acetate buffer is used suggests that the reaction between silver(I) and zolon red is reversible

$$\text{HZR} + \text{Ag}^+ \rightleftharpoons \text{AgZR} + \text{H}^+$$

The dissociated hydrogen ions are removed in presence of acetate buffer and equilibrium of the above reaction is shifted towards right resulting complete precipitation of silver(I).

The presence of dissociable hydrogen is confirmed by the NMR spectra of zolon red which shows four types of proton resonances, one multiplet and three sharp singlets. The integral indicates that the multiplet between δ values of 7.00–8.00 corresponds to ten protons of the two phenyl groups in zolon red. The five-proton singlet at δ = 4.40 is assigned to the five protons of the system, $\text{C}=\text{CH}–\text{CH}=\text{CH}–\text{CH}=\text{CH}$, and the six-proton singlet at δ = 2.30 is assigned to the six protons of the two methyl groups in the structure of zolon red. A sharp one-proton singlet at δ = 2.06 can be assigned to either the proton of the NH group or to the proton of the OH group in the structures 3 and 4, respectively. The presence of this signal in the NMR spectrum, therefore, eliminates the possibility of the structure 1 and 2 for zolon red. The singlet at δ = 2.06 disappears when the sample solution is shaken with a few drops of deuterium oxide and is absent in the NMR spectrum of zolon blue. This observation further supports the elimination of structure 1 and 2 and suggests forms 3 or 4 are possible structures for zolon red since the NH proton and the OH proton could equally be replaced by deuterium.

The absence of NH group and the presence of OH group in the structure of zolon red is confirmed by infrared spectrum. The peak frequencies of zolon blue, zolon red and silver-zolon red compound in the infrared spectra are recorded in Table I.

The blue dye does not show any absorption in the OH and NH stretching region if the spectrum is taken within two days of its preparation. However, after two days weak bands appear in the OH and NH regions and become more prominent after four days although the dye still looks blue. The blue dye completely changes to red after two weeks and the spectrum becomes identical with the spectrum of zolon red. The appearance of bands in the OH and NH regions after two days in the blue dye is due to contamination with red dye because zolon blue is unstable and changes to zolon red which is the stable form of zolon blue-zolon red systems. Structures 1 and 2, therefore, may represent zolon blue but are ruled out for zolon red. The broad absorption at 3410 cm$^{-1}$ and a strong at 1495 cm$^{-1}$ in the infrared spectrum of red dye are assigned OH stretching and NH stretching vibrations respectively. These vibrations disappear in silver-zolon red compound which suggests that the hydroxyl-hydrogen is replaced by silver. The NH stretching frequencies do occur in 3300–3500 cm$^{-1}$ region and the imino-hydrogen could equally be replaced by silver but the NH peaks are usually sharper. Further the absorption at 1560 cm$^{-1}$ in zolon red and 1550 cm$^{-1}$ in silver-zolon red compound which are assigned $\text{C}=\text{O}$ stretching in $\text{C}=\text{O}$–OH group, are not in favour of structures 3 having NH group. Structures 1, 2 and 3 represent only one type of carbonyl group, $\text{C}=\text{O}$ whereas structure 4 is expected to show two types of $\text{C}=\text{O}$ stretching frequencies because of $\text{C}=\text{O}$ and $\text{C}=\text{O}$–OH groups. Zolon red does exhibit a peak at 1560 cm$^{-1}$ which is retained in silver-zolon red compound at 1550 cm$^{-1}$. Infrared spectra, therefore, favours structure 4 for zolon red because of the presence of OH group. The presence of OH group rather NH group in zolon red should not be surprising as most of the pyrazolone dyes e.g., Eriochrome red B and xylene yellow 3 G contain OH groups in their structures.

The wave lengths of maximum absorption of solutions of zolon blue, zolon red and silver-zolon red compound in ethanol in the ultraviolet and

| Table I. Wave numbers (cm$^{-1}$) of peak frequencies. |
|-----------------|-----------------|-----------------|
| Zolon blue | Zolon red | Silver-zolon red|
| 650 | 650 | 650 |
| 665 | 660 | 665 |
| 690 | 690 | 695 |
| 752 | 758 | 752 |
| 815 | 830 | 820 |
| 992 | 1005 | 998 |
| 1020 | 1030 | 1022 |
| 1115 | 1120 | 1120 |
| 1200 | 1195 | 1195 |
| 1232 | 1240 | 1245 |
| 1310 | 1335 | 1335 |
| | 1495 | — |
| | 1560 | 1550 |
| 1595 | 1595 | 1595 |
| | 3410 | — |
visible regions are recorded in Table II. Zolon red and silver-zolon red form orange and red-purple solutions respectively in organic solvents but both show maximum absorption at 255 nm and 520 nm in the electronic absorption spectra. The structure of silver-zolon red compound has not been investigated. However, it seems the silver compound is formed by ions association like silver acetate (AgOOCH₃) because complexes of silver(I) are not well known for oxygen ligands. The change of colour of zolon red, when it reacts with silver(I), from orange to red-purple in solution and intense blue in solid is perhaps due to charge transfer transitions involving the ion pair, AgZR⁻.

Conclusion

This work on the basis of chemical and spectroscopic studies supports the presence of hydroxyl group in the structure of zolon red and suggests it to be the enol form of the tautomers. Zolon red, therefore, should be best represented by structure 4.

We are thankful to Dr. S. A. H. Zaidi, Mr. F. I. Ozoh of the University of Nigeria and Dr. G. Webb of the University of Glasgow for their help in the determination of molecular weight and micro analysis. We would also like to thank Dr. J. U. Oguakwa and Dr. E. C. Okafor for useful discussions.

Table II. The wave lengths (nm) of maximum absorption.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour of the solution</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolon blue</td>
<td>Blue</td>
<td>250, 625</td>
</tr>
<tr>
<td>Zolon red</td>
<td>Orange</td>
<td>255, 520</td>
</tr>
<tr>
<td>Silver-zolon red</td>
<td>Redpurple</td>
<td>255, 520</td>
</tr>
</tbody>
</table>