A Convenient Route to N-Acetyl-D-glucosamine-2-C-d and N-Acetyl-D-mannosamine-2-C-d

L. SZILÁGYI
Department of Organic Chemistry, L. Kossuth University, Debrecen, Hungary

P. HERCZEH
Antibiotics Research Group of the Hungarian Academy of Sciences, L. Kossuth University, Debrecen, Hungary

and

GY. BUJTÁS
Central Chemical Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary

(Z. Naturforsch. 32b, 296-298 [1977]; received December 7, 1976)

Amino Sugars, C-Deuteration, ¹H NMR

Title compounds were prepared through epimerisation of 2-acetamido-2-deoxy-D-glucose in NaOD. The isotopic purity of the products was determined by NMR and mass spectroscopy. The mechanism of epimerisation is briefly discussed.

In connection with our studies on the interaction of lysozyme with deuterium-labelled monosaccharide inhibitors, we needed gram quantities of 2-acetamido-2-deoxy-D-glucose-2-C-d (2) in fairly high isotopic purity. Alì and Richardson proposed a rather complicated route for the synthesis of 2. The well-known epimerisation of 2-acetamido-2-deoxy-D-glucose (1) offers a much simpler alternative. This reaction takes place under basic conditions and results in a 4:1 mixture of the gluco and manno epimers, respectively. Coxon and Hough suggested, without experimental proof, the following plausible scheme for the mechanism of epimerisation.

![Diagram]

If this mechanism is correct, complete exchange between the sugar C-2 proton and water protons should occur during the epimerisation process. This is exactly what we observed. The anomeric proton doublet in the ¹H NMR spectrum of 1 (δ ~ 5.2, J₁₂ = 2.5 Hz) began to collapse immediately when a D₂O solution of 1 was made basic with NaOD. This phenomenon indicated that fairly rapid proton exchange occurred at C-2 of 1. More detailed information could, however, be obtained by observing the ¹H NMR spectrum of 2-acetamido-2-deoxy-D-mannose (7) under similar conditions. This spectrum (Fig. 1A) displays, in addition to the anomeric proton signals, well-resolved resonances for H-2 (α- and β-anomer) and H-3 (α-anomer). Since the spectrum of 1 is empty in this region the course of the epimerisation can be conveniently monitored through changes in the ¹H NMR spectrum of 7. The intensity of the H-2 signals decreased rapidly when NaOD was added to a solution of 7 in D₂O with concomitant collapse of the H-1 (to singlets) and the H-3 (to a doublet) resonances. Fig. 1B shows the ¹H NMR spectrum of the D-manno epimer (8), isolated pure from the reaction mixture.

The exact percentage of the deuterium incorporated could not be determined from this spectrum alone, however. A quantitative estimate was obtained from the ¹H NMR spectrum of 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranose (6) prepared from 2. Comparison of the residual H-1 doublet to the main H-1 “singlet” showed that 6
contained ~70-75% deuterium at C-2. The exact percentage was determined through 2H NMR. For this purpose, 2-(acetetyl-d-amino)-2-deoxy-D-gluco-pyranose-2-C-d (4) (and the D-manno analogue (9)) was prepared by treating 2-(acetetyl-d-amino)-2-deoxy-D-gluco-pyranose (3) with NaOD. Compound 3 was obtained by N-acetylation from 2-amino-2-deoxy-D-glucose using (CH$_3$DCO)O. The deuterium content of 3 was >99.5%. A reliable 2H intensity reference label was thus introduced into compound 2. Integration of the proton noise-decoupled FT 2H NMR spectrum of 4 showed its deuterium content at C-2 to be 71 ± 2%.

![Fig. 1. Partial 100 MHz 1H NMR spectra of 2-acetamido-2-deoxy-D-mannose (7) (A) and 2-acetamido-2-deoxy-D-mannose-2-C-d$_1$ (8) (B) in D$_2$O solution.](image)

Fig. 1. Partial 100 MHz 1H NMR spectra of 2-acetamido-2-deoxy-D-mannose (7) (A) and 2-acetamido-2-deoxy-D-mannose-2-C-d$_1$ (8) (B) in D$_2$O solution.

Obviously, the dilution of D$_2$O due to the five exchangeable protons in 1 (or 3) may have contributed considerably to the incomplete deuterium incorporation at C-2. When the exchangeable protons in 3 were replaced by deuteriums prior to epimerisation, integration of the D-2 signals against the CO-CH$_2$D signal in the 2H NMR spectrum of 4 indicated 94 ± 2% D at C-2. This figure was substantiated by mass spectral data of 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-a-D-glucopyranose-2-C-d (5) obtained by epimerisation and subsequent acetylation from per-O,N-deuterated 1. Both EI and Cl (NH$_3$) mass spectra of 5 and its unlabelled counterpart were recorded and the abundance of their ions M-43, M-148, M-233 (EI), M+1 and M+18 (Cl) compared (correction for the naturally occurring isotopes was carried out). The mean value of the D content was found to be 89 ± 2% for each of these ions in 5.

In conclusion, it can be stated that the high percentage of deuterium incorporation found by NMR and mass spectroscopy* provides strong support in favour of the mechanism advanced by Coxon and Hough for the base-catalysed epimerisation of amino sugars. On the other hand, this reaction is potentially useful for the preparation of amino sugars specifically labeled with tritium and possessing high specific activity.

This manuscript had been under preparation when the paper of Salo et al. reporting similar use of the epimerisation reaction, came to our attention.

Experimental

Compounds 5 and 6 were obtained by procedures described for the preparation of the unlabelled compounds. 4 was prepared from 3 by the procedure described below for 2.

2-Acetamido-2-deoxy-D-glucopyranose-2-C-d (2)

This compound was prepared essentially by the method of Spitay and Roseman. 10 g of 1 was lyophilised 3 times from D$_2$O then dissolved with gentle warming (30-35 °C) in 25 ml of 0.1 mol/dm3 NaOD in D$_2$O. The pH of the solution was 11-11.5. After standing at room temperature for 48 hrs it was treated with BIO-RAD AG 50 W (H$^+$-form) cation exchange resin (to pH 5-5.5) and evaporated under reduced pressure until incipient crystallisation. 5.1 g of a white crystalline product was obtained; m.p. 203-205 °C, [a]$_D$ + 47.8° (H$_2$O, equilibrium). Horton gives for 1 m.p. 203-205 °C, [a]$_D$ + 41°. Further 1.85 g was obtained in two crops from the mother liquors (overall yield 70%).

1H NMR δ 5.2 s, H-1(α); δ 4.75 s, H-1(β).

2-Acetamido-2-deoxy-D-mannopyranose-2-C-d (8)

The mother liquors from 2 were evaporated to dryness and worked up as described by Kuhn and Baschang. Crystallisation from water-aceton yielded 1.0 g (yield 10%) of a product, m.p. 125-127 °C, [a]$_D$ + 8.9° (H$_2$O, equilibrium). Lit. gives for 7 m.p. 128-129 °C, [a]$_D$ + 9.7 °C. The 1H NMR spectrum of 8 is shown in Fig. 1 B.

EI mass spectrum of 5 (the mass spectrum of the unlabeled compound was published).

m/e (%): 348(0.6), 347(3.3), 346(1.2), 330(1.5), 329(0.4), 319(1.1), 318(0.2), 289(0.5), 288(2.3),

* The agreement between the NMR and mass spectral data can be regarded as satisfactory considering the integration accuracy of both methods.
We thank Professor R. Bognár (L. Kossuth University, Debrecen) for his interest and Dr. L. Radics (Central Chemical Research Institute, Budapest) for recording the 1H NMR spectra.

2 Y. Ali and A. C. Richardson, Carbohydr. Res. 5, 441 [1967].
3 S. Roseman and D. G. Comb, J. Amer. Chem. Soc. 80, 3166 [1958].